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Sequencing heterogeneous orders in Bucket Brigade order-picking lines

Yossi Bukchin, Eran Hanany, and Eugene Khmelnitsky 

Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel 

ABSTRACT 
Bucket Brigade (BB) is a common approach for dynamic work-sharing in order-picking lines. 
Differently from typical analysis, we assume heterogeneous orders, which creates blockages and 
reduced efficiency. The problem is how to sequence entering orders with the aim of minimizing 
this potential inefficiency. The proposed framework models order-picking lines with workload dis
tributed along the picking aisle according to the number of items to be picked in each pick face. 
We propose a measure for quantifying the generated blockage inefficiency (BI) as a proxy for the 
makespan. As the BI depends on the sequence of orders, several strategies are proposed to iden
tify sequences with no-blockage or with minimal BI. We provide several practical sequencing poli
cies. Sequencing based on no-blockage notions and steady-state hand-off positions is proved 
useful, and no-blockage is implied by first-order distributional dominance sequencing. Traveling 
salesman problem and Hamiltonian path modeling is proposed as an exact computational method 
of item-specific sequences with minimal or no blockage in a strong sense. A simple policy ensures 
low BI for large sets of orders, for which we show an asymptotic result: the BI of any efficient 
sequence approaches zero in the limit as the sequence length tends to infinity. In general, 
sequencing orders is a practically relevant and effective managerial strategy, as it typically sub
stantially reduces the BI and often eliminates it entirely.
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1. Introduction

Modern environments of order-picking apply work-sharing 
methods, whereby multiple cross-trained workers share the 
sequential execution of multiple operations on a given order 
to complete a product or service. Such environments 
become quite complex when demand is customer specific 
and orders are heterogeneous, as the system control 
becomes more challenging and operational performance 
may deteriorate. Possibly the most commonly analyzed 
work-sharing approach in serial lines is the Bucket Brigade 
(BB) proposed by Bartholdi and Eisenstein (1996). 
According to BB in order-picking lines, whenever the last 
downstream worker in the picking aisle completes an order, 
the worker moves back and takes over the order from the 
immediate upstream worker, this upstream worker continues 
similarly with the next upstream worker, and the procedure 
continues until the first upstream worker starts processing a 
new order.

In general, serial lines suffer from throughput loss due to 
halting, starvation and blockage. The former two issues 
mostly do not exist in a fully cross-trained BB system, 
whereas the latter occurs when workers are not allowed to 
overtake each other. Most of the relevant literature, as well 
as the current article, assume that overtaking is not allowed. 

This stems from the fact that overtaking is very difficult to 
apply in real-world order-picking in forward storage areas, 
due to technological reasons and cost of footprint. Bartholdi 
and Eisenstein (1996) suggested conditions ensuring a self- 
balancing BB line under the assumptions of uniform orders, 
full cross-training of the workers, no restriction on the 
hand-off point (the point in which a job is handed from 
one worker to another), and a completely deterministic 
nature of the system. They show that when the workers are 
arranged from slowest to fastest, the line does not suffer 
from blockages, thus achieving the maximal theoretical 
throughput rate. Additionally, they show that under the 
above assumptions the hand-off positions converge to a con
stant steady-state, consequently each worker specializes on 
executing their own work segment for each order.

One of the common assumptions in the BB literature is 
that of homogeneous orders, namely identical orders with 
planned workload uniformly distributed along the line/aisle. 
Homogeneous orders may include the possibility of stochas
tic workload, in that the planned workload in each pick face 
along the aisle has the same probabilistic distribution, but 
its realization may vary across orders. In this article we fol
low Hong et al. (2016) and Fibrianto and Hong (2019) by 
relaxing the assumption of homogeneous orders and consid
ering heterogeneous orders, i.e., orders that differ from one 
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another in their planned total workload or its distribution 
along the line. Such heterogeneity generates potential block
ages that may be eliminated via sequencing. The following 
small example demonstrates the importance of order 
sequencing. Say there is a picking aisle with 90 pick faces 
and two orders to pick. Order 1 contains 60 items to be 
picked from pick faces 1 to 60, and order 2 contains 30 
items to be picked from pick faces 61–90. The pick time is 
one time unit per pick. As demonstrated in Figure 1, two 
pickers are working in the aisle under a BB regime. We 
assume that the walking time between picks is negligible 
and that the pickers work at the same work rate. Consider a 
sequence in which order 1 (shown in red) precedes order 2 
(shown in blue). Solid lines depict the planned workload 
that was already accomplished, and dash lines the remaining 
planned workload. In this case, as seen in Figure 1(a), the 
downstream worker (D) picks order 1, while the upstream 
worker (U) is blocked. After 60 time units, the downstream 
worker completes picking order 1, and continues to the end 
of the line to submit the order. Then a hand-off occurs at 
pick face 61, where the downstream worker starts picking 
order 2, while the upstream worker goes to the start of the 
line to take the next order (if any). The total pick time of 
the two orders (the total time of the two cycles) equals 90 
time units. Now consider the opposite sequence of the 
orders, namely order 2 precedes order 1. Figure 1(b) shows 
both workers picking simultaneously, the downstream 
worker with order 2 and the upstream worker with order 1. 
After 30 time units, the downstream worker completes pick
ing order 2 and returns to the upstream worker. A hand-off 
occurs at pick face 31, where the downstream worker starts 
picking order 1, while the upstream worker goes to the start 
of the line to take the next order (if any). The total pick 
time of the two orders is now equal to 60 time units, 33% 
lower than in the previous sequence. The example suggests 
that even when the two workers have the same, constant 
work rate, the different planned workloads may lead to 
potential blockages, which would be significantly affected by 
the arrival sequence of the various orders into the line.

In general, blockages impair the line’s throughput, due to 
the partial utilization of the blocked workers’ potential work 
rates. Therefore, although a main motivator for implement
ing a BB line is its successful ability to solve blockage prob
lems stemming from random variability in the process when 
orders are homogeneous, BB lines are far from adequate in 
handling blockage problems when the process involves sys
tematic, planned for heterogeneity across the orders. Missing 
from the literature is a general understanding of simple and 

efficient operational policies for BB lines with heterogeneous 
orders. This is the main contribution of this article.

We propose to investigate BB lines with given heteroge
neous orders, further controlled using order sequencing. 
Our proposed modeling approach fits common real-world 
order-picking processes in forward storage areas, where each 
order may contain a different set of Stock Keeping Units 
(SKUs) / items resulting in different total picking require
ments, or different workload distributions. As shown in 
Figure 2, two pickers work in an aisle and the workload is 
distributed according to the number of items to be picked at 
each pick face.

Order heterogeneity generates potential blockages in BB 
order-picking lines, as discussed above. The amount of 
blockage is affected by the particular set of orders and the 
exact sequence in which they enter the line. Two common 
operational approaches to reducing blockages include order 
batching and sequencing. The former determines the set of 
orders and is applicable for order-picking, whereas the latter 
determines the order sequence and is applicable in general. 
In this article we concentrate on sequencing as the oper
ational strategy given the set of orders, and our contribution 
is to show that this is very effective in handling the blockage 
problems. To this end, we propose a measure of Blockage 
Inefficiency (BI), defined for a given sequence of orders as 
the work capacity loss due to blockage divided by the total 
workload for all orders. As this BI might be high or low 
depending on the chosen sequence of orders, we propose to 
solve a static sequencing problem for finding efficient 
sequences that minimize the BI. We show that this objective 
may be seen as a proxy for the minimization of the produc
tion makespan (MS).

We demonstrate with simple examples the potentially 
severe inefficiency that we might obtain, depending on the 
work rates and the sequence of orders. Nevertheless, our 
general conclusion is that the sequencing problem we for
mulate is practically very relevant, as it typically substantially 
reduces this inefficiency and often eliminates it entirely. 

Figure 1. Sequencing heterogeneous orders.

Figure 2. General example illustrating an order-picking process with heteroge
neous orders.
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This is relevant when the number of orders is either small 
or large.

To establish the above general conclusion, we propose 
several sequencing policies. As preliminary analysis, we pro
vide necessary and sufficient conditions for no-blockage and 
for blockage during a cycle using a cumulative workload dif
ference function that also takes into account the work rates.

Our first result concerns non-uniform identical orders, 
for which we show that no-blockage in any cycle is guaran
teed as long as the workers are positioned slowest to fastest. 
This analysis leads to a generalization of Bartholdi and 
Eisenstein’s (1996) steady-state hand-off positions to orders 
with non-uniform distributions.

This approach is extended in several directions. We first 
propose to check easily verifiable conditions on the given set 
of orders, thus ensuring no-blockage in general. The analysis 
is based on particular, nested notions of no-blockage. The 
first, most demanding notion involves a set of order types 
with universal no-blockage, in the sense that no blockage 
occurs for any sequence of order types selected from the set. 
Moreover, this set of orders is maximal in the sense that 
including in the set any additional order type from outside 
the set necessarily violates the universality requirement. 
We provide an algorithm for determining the inclusion in 
such a set of order types, which therefore ensures that any 
sequence has no-blockage.

We then propose three sequencing policies. The first 
sequencing policy concerns sorting the orders according to 
non-increasing weighted average of steady-state hand-off 
positions. Here we consider orders with identical total work
load, but possibly different distributions. For such orders we 
show that this sequencing policy can ensure no-blockage, 
and demonstrate numerically that the policy effectively 
decreases the BI. The policy is also compared numerically to 
the other two sequencing policies for general orders.

The second sequencing policy is based on a second, less 
demanding notion of no-blockage. It involves a sequence of 
orders with strong no-blockage, in the sense that no blockage 
would occur when each consecutive pair of orders in the 
sequence were processed alone. We show that first-order 
distributional dominance is sufficient for strong no-block
age, thus there is a wide opportunity for strong no-blockage. 
We also propose an extension to general orders by solving a 
Travelling Salesman Problem (TSP) formulation based on 
strong no-blockage. In particular, Hamiltonian paths in the 
zero cost subgraph are strong no-blockage sequences.

The third and last sequencing policy generates low BI 
when the number of orders to be sequenced is relatively 
large. This policy involves a sequence in which groups of 
identical orders are ordered lexicographically according to 
increasing total workload and then decreasing steady-state 
hand-off position. We use the sequencing policy for piece
wise linear orders, which are relevant e.g. in order-picking 
processes (as in Figure 2). For such orders we demonstrate 
substantial reductions in the BI, and also that for piecewise 
linear order types with any given approximation level and 
slowest to fastest assignment of the workers, the BI of any 
efficient sequence approaches zero in the limit as the 

sequence length tends to infinity. This result is important 
also because piecewise linear order types are a good approxi
mation for the domain of all order types when the number 
of break points is large. The analysis is supplemented by a 
numerical experimentation which demonstrates how the 
above three sequencing policies reduce the BI for general 
orders.

In the remainder of the Introduction we review the rele
vant literature on work-sharing systems and BB in particu
lar. Systems that adopt work-sharing differ by the level of 
worker cross-training, ranging from full cross-training where 
all workers are capable of performing the whole task, to par
tial cross-training where there is only some overlapping 
between the capabilities of the workers. On the operational 
side, Ostolaza et al. (1990) use the term Dynamic Line 
Balancing (DLB) to describe predefined tasks that are shifted 
dynamically between adjacent stations/workers based on the 
state of the system. Hopp et al. (2004) investigated these 
issues in the context of achieving a low ratio of work-in- 
process (WIP) to throughput. Besides the level of cross- 
training, they investigated the line topology by studying 
D-Skilled Chaining (DSC), which was initially coined by 
Jordan et al. (2004), and Cherry Picking (CP). In CP, only 
the bottleneck worker is assisted by the other workers, while 
the cross-training under DSC is symmetric among the work
ers, as each worker can help the adjacent upstream/down
stream workers. The literature has also addressed other 
variations of work-sharing systems, such as preemption by 
which a task may be split between workers (McClain et al., 
2000), and processes in which machines are involved 
(Zavadlav et al., 1996). We note that the scheduling litera
ture typically does not address these issues, due to the 
assumption taken in this literature that processing times are 
not affected by item sequencing.

Following Bartholdi and Eisenstein (1996), several exten
sions have been suggested (see Bratcu and Dolgui (2005) for 
a review). In the deterministic domain with homogeneous 
items, the BB system dynamics for two and three workers 
was analyzed in Bartholdi et al. (1999). The chaotic behavior 
of the hand-off point when the convergence condition does 
not hold was studied in Bartholdi et al. (2009). Armbruster 
and Gel (2006) relaxed the dominance assumption, and 
studied a two-worker line in which one worker may be 
faster than his neighbor in some part of the line, and slower 
in the other part. They provided insights and operation 
principles for various scenarios. Gurumoorthy et al. (2009) 
analyzed the dynamics of a line with two workers, each hav
ing an arbitrary, constant speed at each station. When con
sidering discrete workstations, the results of the basic 
continuous model approximately hold for large number of 
stations, however, a different analysis is needed when the 
number of stations is small. This issue was considered in 
Lim and Yang (2009), who found conditions under which 
two- and three-station lines maximize throughput for a 
given number of stations. Bartholdi et al. (2006) applied the 
BB principles in an in-tree network of sub-assembly lines. 
Bratcu and Dolgui (2009) and Lim (2011) relaxed the com
mon assumption of infinite worker walk back speed, where 
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the latter proposed a cellular configuration model. Lim and 
Wu (2013) studied a U-line BB system with discrete stations. 
In another direction, Armbruster et al. (2007) and Montano 
et al. (2007) studied the effect of learning in BB systems, 
where the latter suggested an alternative control rule named 
modified-work-sharing. Some industrial case studies of BB 
have been studied in Bartholdi and Eisenstein (2005), Lim 
(2005) and De Carlo et al. (2013).

In the stochastic domain with homogeneous items, 
Bartholdi et al. (2001) studied the performance of BB under 
the assumption of stochastic processing times, and showed 
that the throughput rate converges to its optimal value as 
the number of stations increases. Buzacott (2002) considered 
four-station and two-worker stochastic lines with or without 
preemption and derived the optimal policy, which modifies 
the non-preemptive BB rule. Bratcu and Dolgui (2009) 
studied a BB system with stochastic performance rates via 
simulations, assuming that both working and walk back 
speeds are normally distributed. Hong (2014) derived an 
analytic expression for the two-worker blocking congestion 
in a circular-passage system under the assumptions of con
stant worker speeds and probabilistic picks. In a later paper, 
Hong et al. (2015) provided a closed-form expression to the 
level of blocking for two extreme walk speed cases. Bukchin 
et al. (2018) studied three variants of BB production lines 
under the assumption of stochastic worker speeds: the trad
itional BB line, BB with Overtaking allowed (BBO), and a 
benchmark system of parallel workers. They showed that BB 
lines may perform better than a comparable system with 
parallel workers, and that the best configuration is BBO. 
Additionally, they showed that slowest to fastest is not 
always optimal when speeds are stochastic. Wang et al. 
(2022) study a BB system with discrete work stations where 
the time duration for each worker to process an item at a 
station is exponentially distributed with a rate that depends 
on the station’s work content and the worker’s work speed. 
The general conclusion that BB lines are immune to sto
chastic workloads even without sequencing is a direct conse
quence of the assumption of homogeneous orders. In 
contrast, our contribution is to show that sequencing poli
cies are very much required when orders are heterogeneous.

Hong et al. (2016) and Fibrianto and Hong (2019) con
sidered heterogeneous items in deterministic environments. 
They developed a batching and sequencing Mixed-Integer 
Programming (MIP) formulation to reduce blocking delays 
in BB order-picking lines with work-content-dependent pick
ing times. Integrating a “rolling horizon” implementation of 
this Mixed-Integer Programming (MIP), they considered at 
each step a small number of orders within a simulation with 
stochastic picking times and compared the results with a ran
dom policy. Our contribution compared with these papers is 
to offer simple and optimal sequencing policies that typically 
eliminate the BI almost entirely, and this is shown analytically 
and numerically. Such policies may be used as substitutes or 
in addition to batching operations.

The rest of this article is organized as follows. In Section 
2 we present the model and propose our measure of BI for 
a BB line with heterogeneous orders. In Section 3 we 

propose several sequencing policies for reducing the BI, and 
provide an evaluation of these policies using formal results, 
examples and numerical studies. Section 4 discusses general
izations and concludes. A preliminary analysis of no-block
age and blockage sequences is included in Appendix A, and 
all proofs are collected in Appendix B.

2. Model

We study a BB line (Bartholdi and Eisenstein, 1996) for 
coordinating the efforts of several workers along a forward 
storage order-picking aisle. The protocol of BB includes for
ward (downstream) and backward (upstream) movements of 
each worker along the line. During a forward movement, 
the worker is involved in picking an order. Moving forward 
ends for the most downstream worker upon reaching the 
end of the line with a finished order, and ends for any other 
worker upon meeting their immediate downstream worker 
who is moving backward. When moving backward, the 
worker does not hold any order. Moving backward ends for 
the most upstream worker upon reaching the start of the 
line, and ends for any other worker upon meeting their 
immediate upstream worker who is moving forward. When 
such a meeting occurs, the downstream worker takes the 
order from the upstream worker and starts a forward move
ment to continue processing it, and the upstream worker 
starts a backward movement to take a different order from 
an upstream worker or from the start of the line. Therefore, 
the completion of an order by the most downstream worker 
initiates a sequence of such meetings, which are together 
called a hand-off event.

The work rate of each worker k ¼ 1, :::, K, i.e., the 
amount of work that the worker can process in a unit of 
time, is fixed at rk > 0: In line with most of the literature, 
we assume that the time required for any worker to return 
upstream is insignificant compared with the time required 
to work downstream, thus all workers hand-off simultan
eously and the duration of any hand-off event may be 
ignored. The sequence of the workers along the line does 
not change over time, as overtaking is not allowed. As a 
result, each worker either proceeds at their own work rate 
or at a reduced pace when blocked by the next downstream 
worker. To be consistent with our focus on blockage (not 
starvation) problems, we assume a continuous line, namely 
that a hand-off can occur at any position along the line, and 
without loss of generality, identify the line with the interval 
[0, 1]. At time 0, a given set of heterogeneous orders is 
ready to be processed at the start of the line. Order j ¼
1, 2, :::, J is identified by an order type, i.e., a bounded work
load density function wj : ½0, 1� ! Rþ, for which the corre
sponding cumulative workload distribution function, WjðxÞ, 
is assumed to be well defined for any x 2 ½0, 1� as the inte
gral of wjðxÞ over [0, x]. Differently from probability distri
butions, the total workload Wjð1Þ may be above, equal or 
below one. The permutation sequence of the orders, denoted 
by s ¼ ðs1, :::, sJÞ, where sj is the order at position j ¼ 1, :::, J 
in the sequence, is given before production starts. We aim 
at determining the appropriate sequence of orders s in order 
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to minimize the blockage inefficiency (formal definition pro
vided below), thus a set of orders W ¼ fWj, j ¼ 1, :::, Jg
together with a vector of work rates r ¼ ðrk, k ¼ 1, :::, KÞ
will be referred to as a sequencing problem ðW, rÞ:

Fixing the sequence of the workers as 1! 2! :::! K, 
we mostly assume a slowest-to-fastest configuration, i.e., 
r1 � ::: � rK , and for k ¼ 1, :::, K − 1 denote the work rate 
ratio of worker k to worker kþ 1 by �rk ¼

rk
rkþ1

: Given a 
sequencing problem ðW, rÞ, for any sequence s, the nth 
hand-off state of the system, xnðW, r, sÞ ¼ ðxn, kðW, r, sÞ, k ¼
1, :::, KÞ for 0 � xn, kðW, r, sÞ � 1, defines the position along 
the line of each worker k just before the nth hand-off for 
n ¼ 1, 2, :::, J − 1: At these positions, worker k ¼ maxf1, nþ
K − Jg, :::, K is with order snþK−k, and the most downstream 
worker K has reached the end of the line, i.e., xn, K ¼ 1 for 
n ¼ 0, 1, :::, J: We assume x0, kðW, r, sÞ ¼ 0 for all worker 
k ¼ 1, :::, K − 1 and any sequence s. Since worker K cannot 
be blocked and always reaches the end of the line, the cycle 
time, i.e., the time elapsed between hand-off n − 1 and 
hand-off n, is always

CTnðW, r, sÞ ¼
Wsnð1Þ − Wsnðxn−1, K−1ðW, r, sÞÞ

rK
: (2.1) 

Accordingly, we next define the system MS.

Definition 2.1. The system MS for sequence s is the total 
time to complete processing J jobs,

MSðW, r, sÞ ¼
XJ

n¼1
CTnðW, r, sÞ: (2.2)   

Blockage may occur over any partial interval of the line 
during any cycle n < J, depending on the work rates and 
the type of the order held by each worker. Such blockages 
create inefficiency, due to the reduced pace of any upstream 
worker, which in turn generates longer cycle times, and con-
sequently a higher MS. The maximal amount of work poten-
tially accomplished by any worker is achieved when each 
worker proceeds in their own work rate, i.e., when there is 
no blockage. We next propose a measure to quantify this 
blockage inefficiency. Minimizing this measure is then 
shown to be a proxy for minimizing the MS. 

Definition 2.2. The makespan work capacity for sequence s 
is the maximal amount of work potentially accomplished by 
the workers during the makespan, i.e. if there were no 
blockages,

MCðW, r, sÞ ¼
XJ

n¼1
CTnðW, r, sÞ

XK

k¼maxf1, nþK−Jg

rk

0

@

1

A: (2.3)   

Note that the most downstream worker K is busy in all 
cycles, whereas any upstream worker k ¼ 1, :::, K − 1 is busy 
in all but the cycles n > J − K þ k: Now, defining the total 
workload of all orders by

TWðWÞ ¼
XJ

j¼1
Wjð1Þ, (2.4) 

the difference

BLðW, r, sÞ � MCðW, r, sÞ − TWðWÞ (2.5) 

will be referred to as the work capacity loss due to blockage 
for sequence s. Using these notions, we may define our 
measure of inefficiency.

Definition 2.3. The BI for sequence s is

BIðW, r, sÞ ¼
BLðW, r, sÞ

TWðWÞ
¼

MCðW, r, sÞ − TWðWÞ
TWðWÞ

: (2.6)   

We are interested in sequences s that guarantee low val-
ues of our inefficiency measure, BIðW, r, sÞ: It is useful to 
compare the BI to the MS Inefficiency (MSI), the ratio given 
by the difference between the MS and the theoretical lower 
bound for the MS divided by this lower bound, defined by 

MSIðW, r, sÞ ¼
MSðW, r, sÞ

TWðWÞ=
PK

k¼1rk
− 1

¼

PJ
n¼1CTnðW, r, sÞ

TWðWÞ=
PK

k¼1rk
− 1, 

while noting that 

BIðW, r, sÞ ¼

PJ
n¼1CTnðW, r, sÞ

PK

k¼maxf1, nþK−Jg
rk

PK

k¼1
rk

 !

TWðWÞ=
PK

k¼1rk
− 1

� MSIðW, r, sÞ:

For J � K, excluding the sequence tail consisting of the 
last K − 1 cycles in which not all workers are busy, the com-
ponents of the BI and the MSI are identical. This tail is neg-
ligible for practical sized sequences where J � K: Therefore, 
minimizing the BI over all sequences is a proxy to minimiz-
ing the MS over all sequences. This is formalized by the fol-
lowing proposition.

Proposition 2.1. For any sequencing problem ðW, rÞ with a 
large number of orders, any sequence that minimizes the BI 
approximately achieves minimum MS.  

To compute the BI for a sequence s we apply for each 
cycle a recursive procedure from worker K − 1, the last 
worker that can be blocked, back to worker 1. After calculat-
ing the contribution of each worker k to the BI, we modify 
the order this worker processes by adding virtual work 
exactly so that this worker is no longer blocked by the next 
downstream worker. Then we proceed with this modified 
order to calculate the contribution of worker k − 1 to the 
BI. More details are given in Appendix A. 

Blockage inefficiency has a simple tight upper bound: the 

ratio of work rates, 
PK−1

k¼1
rk

rK
: This is stated in Proposition 2.2. 

The proof of the proposition shows that high inefficiency 
occurs in particular when an order with large total workload 
is followed by an order with a small total workload. 

IISE TRANSACTIONS 441



Proposition 2.2. For any sequencing problem ðW, rÞ and any 

sequence s, an upper bound for BIðW, r, sÞ is 
PK−1

k¼1
rk

rK
, and this 

bound is tight.  

A higher work rate ratio 
PK−1

k¼1
rk

rK
, which equals in particu-

lar �r1 when K ¼ 2, may therefore generate higher ineffi-
ciency. Nevertheless, due to order heterogeneity, blockages 
in early cycles may alleviate blockages in later cycles. 
Specifically, BIðW, r, sÞ is not always increasing with the 

work rate ratio 
PK−1

k¼1
rk

rK
, and may even decrease from a posi-

tive value to zero. In particular, there exists a set of orders 
W, a sequence s and r1, r2, where K ¼ 2, with �r1

1 < �r2
1 such 

that BIðW, r1, sÞ > BIðW, r2, sÞ ¼ 0:
A main subject of interest in our analysis will be sequen-

ces with no-blockage. 

Definition 2.4. A sequence s has no-blockage for ðW, rÞ if 
BIðW, r, sÞ ¼ 0, i.e., for any cycle n, no worker is blocked 
by the subsequent downstream worker throughout the cycle. 

3. Sequencing policies 

Our approach leads to several sequencing policies, described 
and analyzed in the subsections below. 

3.1. Non-uniform identical orders 

The simplest case in our analysis is where W ¼
ð �W , :::, �WÞ ¼ �W , i.e., all orders are identical, say with type 
�W , but the workload may not be distributed uniformly 

across the line. Clearly, there is no meaning to sequencing 
of identical orders. However, given that we analyze the effect 
of order heterogeneity, it is useful to ask as a starting point 
whether identical orders with non-uniform distributions cre-
ate potential blockages. We show that such issues do not 
arise. Intuitively, for this case, since at any position x the 
instantaneous amount of work required by each worker is 
the same, if the workers are ordered slowest-to-fastest, 
blockage cannot occur at any position x. This intuition is 
confirmed by the following no-blockage result. 

Proposition 3.1. For any sequencing problem ð �W , rÞ with 
work rate ratio �rk � 1 for k ¼ 1, :::, K − 1, any sequence has 
no-blockage.  

In steady-state, the hand-off position remains unchanged 
across cycles. This leads us to propose the following defin-
ition, which generalizes Bartholdi and Eisenstein (1996)’s 
definition for uniform, identical orders. 

Definition 3.1. The steady-state hand-off position of type �W 
is x�ð �WÞ ¼ ½x�1ð �WÞ, :::, x�Kð �WÞ� given for all k ¼ 1, :::, K by1

x�kð �WÞ ¼ max xkj �WðxkÞ ¼ �Wð1Þ
Pk

k0¼1rk0
PK

k¼1rk

( )

:

The following proposition shows that the no-blockage 
property of non-uniform identical order sequences guaran-
tees the convergence to steady-state. 

Proposition 3.2. For any sequencing problem ð �W , rÞ with 
work rate ratio �rk < 1 for all k ¼ 1, :::, K − 1 and any 
sequence s, hand-off position n, xnð �W , r, sÞ, converges to the 
steady-state hand-off position x�ð �WÞ as the number of orders 
J approaches infinity, and the convergence rate is exponential. 

Proposition 3.2 leads to the following important insight: 
self-balancing is achieved so that each worker specializes on 
repeatedly executing a fixed work segment. This implication 
is due to the orders being identical rather than being 
uniform. 

3.2. Sequence-independent no-blockage 

Two of the sequencing strategies we propose are based on 
particular, nested notions of no-blockage. The following 
approach is based on the first, most demanding no-blockage 
notion, which therefore has the advantage of ensuring no- 
blockage in a very wide set of scenarios. Recall the definition 
of order types in the second paragraph of Section 2. A conse-
quence of our analysis is that if a system designer can affect 
which order types may enter the line, for example by batching 
orders, the approach described here suggests a way to ensure 
efficiency without the need to worry about order sequencing. 
Specifically, we investigate sets of order types for which no 
blockage occurs in any sequence, which generalizes the case 
of identical orders studied in the previous subsection. This is 
formalized in the following definition we propose. 

Definition 3.2. Given work rates r, a set of order types sat-
isfies maximal universal no-blockage if:

(a) Universality: for any sequence of orders with order 
types selected from the set, no blockage occurs in any 
cycle; and

(b) Maximality: including in the set any additional order 
type from outside the set necessarily violates the uni-
versality requirement (a), i.e., there would exist a 
sequence of orders with order types selected from the 
set including the additional order type, for which 
blockage occurs in some cycle.

Our next result characterizes sets of order types satisfying 
maximal universal no-blockage. Given any maximal work 
rate ratio �r � maxk¼1, :::, K−1�rk and order type W0, denote 
by H�r , W0 the set of all order types Ŵ such that ŴðxÞ 2
�rW0ðxÞ, W0ðxÞ
� �

for all x 2 ½0, 1�: Note that H�r , W0 is non- 
empty if and only if �r � 1, i.e., a slowest to fastest configur-
ation of workers. There are infinitely many such sets, and 
one of them is illustrated in Figure 3 for a linear (uniformly 
distributed) order type W0, together with two possible non- 
linear order types within this set. As shown in the figure, 

1The max is relevant when �WðxÞ is constant because the workload density is 
zero. 
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H�r , W0 is a strict super-set of the set of all order types with 
bounded workload density functions, i.e., such that ŵðxÞ 2
�rw0ðxÞ, w0ðxÞ
� �

for all x 2 ½0, 1�:

Proposition 3.3. For any maximal work rate ratio �r � 1 
and order type W0, the set of order types H�r , W0 satisfies 
maximal universal no-blockage.  

The simple case described in Subsection 3.1 of non-uni-
form identical orders is always a subset of some maximal 
universal no-blockage set H�r , W0 : In particular, when the 
workers are identical, i.e., r1 ¼ ::: ¼ rK , the maximal univer-
sal no-blockage set H�r , W0 includes the single-order type W0:

Additionally, Proposition 3.3 directly implies the following 
natural monotonicity property of maximal universal no- 
blockage with respect to work rate ratios. 

Corollary 3.1. Given an order type W0, work rates r̂ with 
maxk¼1, :::, K−1

r̂ k
r̂ kþ1

< �r and a set of orders W with Wj 2 H�r , W0 

for each j, any s is a no-blockage sequence for ðW, r̂Þ:

The following algorithm may be applied in order to 
check whether a set of orders W is a subset of some max-
imal universal no blockage set: Defining W0 as the pointwise 
maximum of Wj of all orders j in the set W, i.e., let 
W0ðxÞ ¼ max1�j�JWjðxÞ for each x 2 ½0, 1�, check whether 
each Wj is in the set H�r , W0 , i.e., check if WjðxÞ 2
�rW0ðxÞ, W0ðxÞ
� �

for all x 2 ½0, 1� and each order j. 

Proposition 3.4. The decision given by the algorithm always 
identifies correctly whether a set of orders W is a subset of 
some maximal universal no blockage set.  

Example 3.1. We demonstrate the maximal universal no- 
blockage approach with a ðW, rÞ example including five 
orders to be picked from an aisle with 12 pick faces. At a 
pick face, each order either has one unit workload or 
none, as depicted in Figure 4(a), with a corresponding 
cumulative workload distribution function, WjðxÞ, depicted 
in Figure 4(b). Applying the algorithm, the pointwise max-
imum of all orders in Figure 4(b) is identified as W0ðxÞ ¼
maxfW3ðxÞ, W5ðxÞg: Then, for �r ¼ 0:15, since WjðxÞ 2
�rW0ðxÞ, W0ðxÞ
� �

for all x 2 ½0, 1� and each order j, W is a 
subset of the maximal universal no-blockage set H�r , W0 , 
thus any sequence has no blockage. In contrast, for �r ¼
0:5, only the orders W3, W5 are each in H�r , W0 , therefore 
only these two form a subset of this maximal universal 
no-blockage set. 

In sum, we find that maximal universal no-blockage is 
easily identified, and expands when the minimal gap 
between the work rates increases, thus increasing the no- 
blockage opportunities. 

3.3. Steady-state hand-off positions sequencing 

General orders with identical total workload allow a simple 
no-blockage sequencing policy we propose based on the 
steady-state hand-off position introduced in Definition 3.1. 
As we will show, under identical total workload, blockage 
opportunities are reduced when the orders are processed 
with decreasing steady-state hand-off positions, with higher 
importance placed on downstream workers. We therefore 
propose the following sequencing policy. 

Figure 3. Set of order types satisfying maximal universal no blockage.

Figure 4. Five-order subset of a maximal universal no-blockage set.
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Definition 3.3. Let ssshp be a sequence in which the orders 
are sorted according to decreasing weighted average, 
PK−1

k¼1 akx�k , for increasing weights 0 < a1 � ::: � aK−1, of 
steady-state hand-off positions.  

The sequencing policy ssshp reduces blockage opportuni-
ties, because the difference between the work accomplished 
by any upstream worker and the work they would accom-
plish were they to move together with the next downstream 
worker tends to decrease. 

The policy guarantees no blockage under certain condi-
tions, namely a dominance relation between the steady-state 
hand-off positions, together with the ability to initialize the 
process, before the first cycle starts, by letting workers k ¼
2, :::, K work up to the relevant steady-state hand-off pos-
ition of the initial K − 1 orders in the sequence ssshp: 

Proposition 3.5. Consider a sequencing problem ðW, rÞ
where all orders have identical total workload denoted by a, 
i.e., Wjð1Þ ¼ a for all j. Suppose that there exists a sequence 
s� in which the orders have non-increasing steady-state hand- 
off positions, i.e., x�kðWs�1Þ � ::: � x�kðWs�J Þ for all workers 
k ¼ 1, :::, K. Then the same holds for any ssshp sequence. 
Furthermore, if the starting position of each worker k ¼
2, :::, K in the first cycle is the (k–1)th component of the 
steady-state hand-off position of the ðK þ 1 − kÞth order in a 
sequence ssshp, i.e., x0, kðW, r, ssshpÞ ¼ x�k−1ðWssshp

Kþ1−k
Þ, then ssshp 

has no blockage.  

The condition on the sequence s� stated in Proposition 
3.5 is always satsified for K ¼ 2 workers. It ensures that for 
each cycle, each worker starts at their steady-state hand-off 

position of the order they are currently processing, which 
guarantees a no-blockage sequence. This holds regardless of 
the shape of the cumulative workload distribution functions, 
and for any work rates r. 

Example 3.2. Consider a BB sequencing problem ðW, rÞ, 
with r ¼ 9

16 , 1
� �

for two workers and maximal work rate ratio 
�r ¼ 9

16 , and with four orders to be processed with identical 
total workload a ¼ 1: By Definition 3.1, the respective steady- 
state hand-off positions are as in Figure 5(a). Then, according 
to Definition 3.3 and Proposition 3.5, if the orders are 
sequenced with decreasing x�1ðWjÞ, i.e., ssshp ¼ ð1, 2, 3, 4Þ, 
and the starting position of worker 2 in the first cycle is 
x0ðW, r, ssshpÞ ¼ x�1, then ssshp has no blockage. The example 
demonstrates that given the process initialization, orders with 
more picks at the end of the line (e.g., w1 in Figure 5(b)) 
tend to be sequenced early, and vice versa. 

We demonstrate numerically the sequencing policy ssshp, 
with ak ¼ k for k ¼ 1, :::, K − 1, for piecewise linear order 
types. These order types are motivated by order-picking as 
described in the Introduction (see Figure 1). Figure 6 depicts 
the average BI values of 10 randomly sampled sequencing 
problems with K¼ 3, 5 identical workers and increasing 
number of orders J, where each order has total workload 
equal to one and is independently drawn with a piecewise 
linear cumulative workload distribution function (specific-
ally, with approximation levels L ¼ 6, P ¼ 24; more details 
about the definition of such order types is provided in 
Section 3.5). For comparison, a uniformly random sequenc-
ing policy generates higher BI values. For J ¼ 100, the aver-
age BI value with K ¼ 3 is 0.069 under a random sequence, 

Figure 5. Four-order example with identical total workload.

Figure 6. BI for ssshp and piecewise linear orders with K¼ 3, 5 workers.
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which reduces to 0.021 under ssshp, i.e., 70% improvement. 
Again for J ¼ 100, the average BI value with K ¼ 5 is 0.22 
under a random sequence, which reduces to 0.084 under 
ssshp, i.e. 62% improvement. 

3.4. Strong no-blockage sequencing 

The no-blockage requirement of Subsection 3.2, despite being 
useful, is very demanding as it requires no-blockage simultan-
eously for all possible sequences of a large set of order types. 
In this subsection we propose and study a weaker require-
ment based on a simple optimization principle with respect 
to the starting position of workers 2, :::, K: It is based on the 
idea that the zero starting position x0ðW, r, sÞ ¼ 0, conse-
quently the first cycle in a sequence, is a blockage worst case. 

Definition 3.4. An ordered pair of orders has strong pair-
wise no-blockage given r if no blockage would occur in any 
cycle of a sequence consisting only of this ordered pair for 
any pair of consecutive workers working alone. A sequence 
s has strong no-blockage for ðW, rÞ if each consecutive pair 
in s satisfies strong pairwise no-blockage given r.  

A necessary and sufficient condition for strong no-blockage 
is given by Corollary A.1 in Appendix A. Strong no-blockage is 
also monotonic with respect to work rate ratios, as shown next. 

Proposition 3.6. Given work rates r, r̂ with rk
rkþ1
� r̂ k

r̂ kþ1 
for all 

k ¼ 1, :::, K − 1 and a set of orders W, if a sequence s has strong 
no-blockage for ðW, r̂Þ then the same holds also for ðW, rÞ:

3.4.1. First-order distributional dominance sequences 
Strong no-blockage allows us to propose a sequencing policy 
based on a dominance relation between order types. 

Definition 3.5. For any set of orders W, we say that s is a 
first-order distributional dominance sequence if Wsnþ1ðxÞ �
WsnðxÞ for each n and x 2 ½0, 1�:

Since first-order distributional dominance is a relatively weak 
requirement, the following proposition shows that many 
sequencing problems are guaranteed to have strong no-blockage. 

Proposition 3.7. For any sequencing problem ðW, rÞ with 
work rate ratio �rk � 1 for all workers k ¼ 1, :::, K − 1, if s is 

a first-order distributional dominance sequence then s has 
strong no-blockage for ðW, rÞ. When r1 ¼ ::: ¼ rK the con-
verse also holds, i.e., if s has strong no-blockage for ðW, rÞ
then s is a first-order distributional dominance sequence. 

3.4.2. Reducing BI using TSP and Hamiltonian paths 
We now link the problem of finding a strong no-blockage 
sequence for ðW, rÞ to the problem of finding a minimum 
cost TSP and Hamiltonian Paths (see e.g., Garey and 
Johnson, 1979) in an appropriately defined graph. Given a 
sequencing problem ðW, rÞ, consider a complete directed 
graph where the set of nodes is the set of orders W, and the 
cost of the arc connecting order j to order j0 is defined as 
the BI generated by this ordered pair based on strong pair-
wise no-blockage given r, i.e., the BI of processing only this 
ordered pair by the consecutive workers k, kþ 1 with high-
est work rate ratio �r � maxk¼1, :::, K−1�rk working alone. Then 
the set of zero cost TSP paths in this graph, or equivalently 
the Hamiltonian paths in the sub-graph containing only the 
zero cost arcs, is exactly the set of strong no-blockage 
sequences for ðW, rÞ: It follows by Proposition 3.6 that s is a 
no-blockage sequence for ðW, rÞ if a corresponding 
Hamiltonian path exists for some r̂ with rk

rkþ1
� r̂ k

r̂ kþ1 
for all 

k ¼ 1, :::, K − 1: Furthermore, we may define the following 
policy related to strong no-blockage: 

Definition 3.6. Let sTSP be a sequence corresponding to a 
minimum cost TSP path.  

Example 3.3. Figure 7 demonstrates the TSP and 
Hamiltonian paths approach for the five order ðW, rÞ in 
Example 3.1. The directed graphs (a)-(c) in the figure are 
the zero-cost sub-graphs corresponding to the maximal 
work rate ratios �r ¼ 0:15, 0:5, 0:66, respectively, for K � 2 
workers. As explained in Section 3.2, for �r ¼ 0:15, the set of 
orders W is a subset of a maximal universal no-blockage set, 
therefore any sequence has no blockage. Even though this 
property does not hold for the higher maximal work rate 
ratios �r ¼ 0:5, 0:66, there are strong no-blockage sequences 
for ðW, rÞ that correspond to Hamiltonian paths in the 
graphs shown in Figures 7(a)-(c), for example s ¼
ð2, 4, 1, 5, 3Þ: This is the unique such sequence for �r ¼ 0:66, 

Figure 7. Five-order strong no-blockage example; directed graphs for �r ¼ 0:15, 0:5, 0:66, 1; no-blockage sequence (2,4,1,5,3) ¼ sTSP:
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marked with red arcs in Figure 7(c). By Proposition 3.6, s is 
a no-blockage sequence for all �r � 0:66, and calculation 
shows that this does not hold for any �r > 2

3 : The graph (d) 
is the complete directed graph corresponding to the max-
imal work rate ratio �r ¼ 1, i.e. for identical workers. The 
sequence sTSP ¼ ð2, 4, 1, 5, 3Þ, marked with red arcs also in 
Figure 7(d), is a minimum cost TSP path in this graph. 
Calculation using the analysis in Appendix A shows that in 
fact this is a no-blockage sequence. 

3.5. Total workload and steady-state hand-off positions 
combined sequencing 

In this subsection we propose a sequencing policy that gen-
erates low BI when the number of orders to be sequenced is 
relatively large. 

Definition 3.7. Let slex be a sequence in which groups of 
identical orders are sorted lexicographically according to (i) 
increasing total workload, and then (ii) decreasing weighted 
average, 

PK−1
k¼1 akx�k , for increasing weights 0 < a1 � ::: �

aK−1, of steady-state hand-off positions.  

Intuitively, the increasing total workload sequencing policy slex 

has the advantage of no-blockage sequencing of consecutive iden-
tical orders, as explained in Section 3.1. On top of that, it leads 
to higher total workload for upstream workers as compared with 
downstream workers, which tends to reduce the overall physical 
progress of upstream workers along the line relative to down-
stream workers. Furthermore, for different orders with identical 
total workload, slex leads to processing of orders with decreasing 
steady-state hand-off positions, with higher weight given to 
downstream workers. As shown in Section 3.3, such sequencing 
reduces blockage opportunities. This holds because the difference 
between the work accomplished by any upstream worker and 
the work they would accomplish were they to move together 
with the next downstream worker tends to decrease. 

Consider a general, parametric domain of distributions, 
motivated by order-picking as described in the Introduction 
(see Figure 1). For a given finite ordered set X ¼ fypg

P
p¼0 with 

an integer P � 2 being the number of pick faces, and where X
is the set of increasing pick face boundary positions, 0 ¼ y0 <

y1 < y2 < ::: < yP ¼ 1, let WX be the set of all order types 
Ŵ such that Ŵ is piecewise linear with X being its set of 

break points, and where ŴðypÞ 2 ½0, 1� for 1 � p � P: When 
the number of breakpoints P is large, this domain is a good 
approximation for the domain of all order types normalized to 
have total workload of at most one. The number of break-
points P is therefore referred to as a positional approximation 
level. Each Ŵ 2 WX may be represented by the vector A ¼
½a1, :::, aP� with 0 � a1 � a2 � ::: � aP � 1, where ŴðxÞ ¼

ap þ
apþ1−ap
ypþ1−yp

ðx − ypÞ for x 2 ½0, 1Þ and p such that yp � x <

ypþ1, and in particular ap ¼ ŴðypÞ for all 1 � p � P:
We concentrate on a particular subset of piecewise linear 

order types, which will be then used to show that slex is a good 
sequencing policy. Specifically, for two integers L � 1 and Q �
2, where L is a workload approximation level and P ¼ QL is 
the positional approximation level, consider order types such that 
each ap 2 f0, 1

L , 2
L , :::, 1g, and each of these values up to aP is 

attained for some p. Figure 8 illustrates such order types with 
yp ¼

p
P for all 1 � p � P, and for two approximation specifica-

tions alongside an approximated order type with smooth cumu-
lative workload distribution function. The number of layers, L, 
along the vertical axis in the figure represents the possible posi-
tive cumulative workload values (two in the left and six in the 
right), and the number of breakpoint positions, P, along the hori-
zontal axis represents the number of pick faces. Note that we 
may partition any such set of order types to groups l ¼
0, 1, :::, L, where all orders in group l have identical total work-
load of l

L , and the number of order types in group l is Cl ¼

P!
l!ðP−lÞ! , thus the total number of all order types is C ¼

PL
l¼0 Cl:

The next result shows how sequencing according to slex 

reduces the blockage inefficiency for large problems. 

Proposition 3.8. For any sequencing problem ðW, rÞ with 
piecewise linear W under some workload approximation level 
L, positional approximation level P and slowest-to-fastest con-
figuration, using the sequencing policy slex, as the number of 
orders J approaches þ1, the BI approaches zero. 

Finally for this subsection, we demonstrate the sequenc-
ing policy slex numerically with piecewise linear orders types. 
Figure 9 depicts the average BI values of 10 randomly 
sampled sequencing problems with identical workers and 
increasing number of orders J, where each order is inde-
pendently drawn with a piecewise linear cumulative work-
load distribution function given the approximation levels 

Figure 8. Approximation using piecewise linear distributions.

446 Y. BUKCHIN ET AL.



L ¼ 6, P ¼ 24 and K ¼ 2, 3, 5 workers, such that the total 
workload is first uniformly drawn and then the particular 
type is uniformly drawn among all types with the already 
given total workload. Using the sequencing policy slex with 
ak ¼ k for k ¼ 1, :::, K − 1 leads to decreasing BI values, 
which are relatively low already for 10 orders. For compari-
son, a uniformly random sequencing policy generates sub-
stantially higher BI values. 

Table 1 presents the average BI and MSI values for J ¼
100 for each of the sequencing policies and number of 
workers depicted in Figure 9. We observe that for each 
sequencing policy, as the blockage opportunities tend to 
grow, the average BI value increases with the number of 
workers. Additionally, for each sequencing policy, the per-
centage improvement in the average BI value compared to 

random sequencing, as presented in the table, decreases with 
the number of workers. The improvements increase when 
proceeding top to bottom in the sequencing policies. The 
policy ssshp, ak¼k is clearly better than random sequencing. 
The policy slex is better than the policy ssshp, ak¼k, mainly due 
to the added lexicographic criterion of the total workload. 
Note that the latter two policies have polynomial complexity 
as they are based on sorting principles. The policy sTSP is 
observed as the best, and should be used whenever the com-
putational burden is worthwhile. As shown in the table, the 
BI and MSI values agree on the ranking of the policies. 

4. Concluding remarks 

Order heterogeneity in BB order-picking lines may potentially 
reduce the throughput due to blockages. We provide methods 
to quantify this inefficiency and propose practical order 
sequencing policies that substantially reduce it. There are several 
insights and conclusions. First, identical orders should be picked 
consecutively to generate zero blockage. Second, when the order 
workload is controllable, for example via batching, it is recom-
mended to create batches satisfying maximal universal no- 
blockage for any sequence. Alternatively, one may generate 
batches of equal total workload and apply the sequencing policy 
ssshp in order to guarantee no blockage. Yet a further option is 
to apply the strong no-blockage sequencing policy sTSP when its 
computational burden is justified. Finally, when batching is 
not possible or cannot achieve the above conditions, the tract-
able sequencing policy slex leads to substantial improvements. 

A direction in which our approach may be generalized 
and extended is to allow for robustness considerations. This 
may involve accommodating varying work rates across the 
process cycles. Sequencing in a stochastic environment may 
be investigated as well. Other future research directions 
include the investigation of order batching with or without 
sequencing, and studying the sequencing problem in other 
order-picking line configurations, such as pick-and-pass (De 
Koster et al., 2007), cellular BB, and BB with overtaking. 
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Appendix A: Preliminary analysis 

In this appendix we take the first, technical steps in our analysis, provid-
ing a necessary and sufficient condition for no blockage in any cycle, as 
in Definition 2.4, and for blockage in any cycle. Throughout the analysis, 
for notational convenience we set xn, 0ðW, r, sÞ ¼ 0 for any cycle n. 

A useful way of understanding our BI measure of inefficiency is 
through its numerator BLðW, r, sÞ, the work capacity loss due to block-
age. First, note that, using Equation (2.1),

BLðW, r, sÞ

¼
XJ−1

n¼1

XK−1

k¼maxf1, nþK−Jg

rk

rK
Wsn ðxn, KðW, r, sÞÞ − Wsnðxn−1, K−1ðW, r, sÞÞ
� �

�

− WsnþK−k ðxn, kðW, r, sÞÞ − WsnþK−k ðxn−1, k−1ðW, r, sÞÞ
� �

�

, 
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which, since worker K is never blocked, may be interpreted as the sum, 
over all busy cycles for workers k ¼ 1, :::, K − 1, of the difference 
between the amount of work, rk

rK
½Wsn ðxn, KðW, r, sÞÞ − 

Wsnðxn−1, K−1ðW, r, sÞÞ�, that can potentially be accomplished by worker 
k during cycle n, and the amount of work, WsnþK−k ðxn, kðW, r, sÞÞ − 
WsnþK−k ðxn−1, k−1ðW, r, sÞÞ, actually accomplished by worker k due to 
possible blockages during this cycle. In particular, for cycle n with 
xn−1, kðW, r, sÞ ¼ 0 for any worker k ¼ 1, :::, K − 1, e.g. n ¼ 1, the sum-
mand simplifies to 

rk

rK
Wsnðxn, KðW, r, sÞÞ − Wsn ðxn−1, K−1ðW, r, sÞÞ
� �

:

Now, for any order j processed by worker kþ 1 immediately fol-
lowed by order j0 processed by worker k and all x 2 ½0, 1�, define the 
cumulative workload difference function

dj0 , j, kðxÞ � �rkWjðxÞ − Wj0 ðxÞ:

To interpret this difference, consider some cycle n with 
xn−1, kðW, r, sÞ ¼ 0 for any worker k ¼ 1, :::, K − 1, where worker kþ 1 
holds order j ¼ sn−1þK−k and worker k holds order j0 ¼ snþK−k:

Suppose first that no blockage occurs for any position of worker kþ 1 
within the interval I ¼ ð0, xÞ for some x 2 ð0, 1�: Then dj0 , j, kðxÞ is the 
difference between the work accomplished by worker k throughout 
interval I of worker kþ 1, and the work worker k would accomplish 
were worker k to reach position x together with worker kþ 1: In this 
case, dj0 , j, kðxÞ � 0, and interval I has zero contribution to the work 
capacity loss due to blockage.

Formally, to study no-blockage sequences, the following lemma 
is key.

Lemma A.1. Given a sequencing problem ðW, rÞ, a sequence s has 
no-blockage if and only if for all cycles n ¼ 1, 2, :::, J − 1, worker k 2
fmaxf1, nþ K − Jg, :::, K − 1g and x 2 ½xn−1, kðW, r, sÞ, xn, kþ1ðW, r, sÞ�, 

dsnþK−k , sn−1þK−k , kðxÞ � �rk Wsn−1þK−k ðxn−1, kðW, r, sÞÞ − WsnþK−k ðxn−1, k−1ðW, r, sÞÞ
� �

:

(A1)   

Note that Lemma A.1 implies that if no blockage occurs throughout 
cycle n when the starting position of the workers is xn−1ðW, r, sÞ, then 
no blockage would continue to hold throughout the cycle if the starting 
position of any single worker k ¼ 2, :::, K was larger. Consequently, the 
zero starting position of all workers is the worst case in terms of block-
age. This implies that the first cycle in a sequence, for which we always 
assume x0, kðW, r, sÞ ¼ 0 for all k ¼ 1, :::, K − 1, is in particular a block-
age worst case. 

In cycle n of a no-blockage sequence s, the position of hand-off n 
satisfies xn, KðW, r, sÞ ¼ 1 and the recursive relation

xn, kðW, r, sÞ ¼ maxfxjWsnþK−k ðxÞ − WsnþK−k ðxn−1, k−1ðW, r, sÞÞ
¼ �rkðWsn−1þK−k ðxn, kþ1ðW, r, sÞÞ − Wsn−1þK−k ðxn−1, kðW, r, sÞÞÞg

(A2) 

for k ¼ 1, :::, K − 1: In this recursion, the max is relevant when the 
equality constraint in (A2) holds over a closed interval of x values, 
which happens when WsnþK−k ðxÞ is constant there because the workload 
density is zero.

The following corollary to Lemma A.1 characterizes strong no- 
blockage (see Definition 3.4).

Corollary A.1. A sequence s has strong no-blockage for ðW, rÞ if and 
only if for all cycles n ¼ 1, 2, :::, J − 1 and all workers 
k 2 fmaxf1, nþ K − Jg, :::, K − 1g, 

max
0�x�1

dsnþK−k , sn−1þK−k , kðxÞ � 0:

Suppose now that worker k is the most downstream worker blocked 
by worker kþ 1, where this blockage occurs for the entire position 
interval I ¼ ð0, xÞ for some x 2 ð0, 1�: Then dj0 , j, kðxÞ is the difference 
between the amount of work, �rkWjðxÞ, that can potentially be accom-
plished by worker k within interval I, and the amount of work, Wj0 ðxÞ, 
actually accomplished by worker 1 due to this blockage. In this case, 

dj0 , jðxÞ > 0, and is exactly the positive contribution of interval I to the 
work capacity loss due to blockage. 

To understand the possibility of blockages in general, we may con-
sider intervals I ¼ ðy1, y2Þ � ½xn−1, kðW, r, sÞ, xn, kþ1ðW, r, sÞ� for 
xn−1, kðW, r, sÞ � 0, where y1 is a joint position for workers k, kþ 1 if 
one exists otherwise y1 ¼ xn−1, kðW, r, sÞ, and let y0 ¼ y1 in the former 
case and y0 ¼ xn−1, k−1ðW, r, sÞ in the latter. Then, extending the func-
tion dj0 , j, kðxÞ to such intervals I by defining dj0 , j, kðIÞ ¼ dj0 , j, kðy2Þ − 
dj0 , j, kðy1Þ, no blockage occurs for any position of worker kþ 1 within 
the interval I if and only if dj0 , j, kðI0Þ � �rk½Wjðy1Þ − Wjðy0Þ� for all inter-
vals I0 ¼ ðy0, xÞ with x � y2, in which case interval I has zero contribu-
tion to the work capacity loss due to blockage. Additionally, blockage 
occurs throughout I if and only if y0 ¼ y1 and dj0 , j, kðI0Þ > 0 for all sub- 
intervals I0 � I, in which case dj0 , j, kðIÞ is exactly the contribution of 
the interval I to the work capacity loss due to blockage. In the latter 
case, dj0 , j, kðIÞ is the difference between the amount of work, 
�rkðWjðy2Þ − Wjðy1ÞÞ, that can be potentially accomplished by worker 1 
during interval I, and the amount of work, Wj0 ðy2Þ − Wj0 ðy1Þ, actually 
accomplished by worker 1 due to this blockage. It follows that 
BLðW, r, sÞ, the work capacity loss due to blockage and the numerator 
of BIðW, r, sÞ, is equal to the sum of dj0 , j, kðIÞ over all disjoint blockage 
intervals in all cycles. 

Formally, to study blockage sequences, the following lemma is key. 

Lemma A.2. Given a sequencing problem ðW, rÞ, a sequence s and a 
cycle n ¼ 1, 2, :::, J − 1, when worker k 2 fmaxf1, nþ K − Jg, :::, K − 1g
is the most downstream worker blocked by worker kþ 1, this blockage 
occurs at position x 2 ðxn−1, kðW, r, sÞ, xn, kþ1ðW, r, sÞÞ if and only if 

dsnþK−k , sn−1þK−k , kðxÞ − dsnþK−k , sn−1þK−k , kðlkðxÞÞ > �rk Wsn−1þK−k ðlkþ1ðxÞÞ
�

−Wsn−1þK−k ðlkðxÞÞ� (A3) 

and 

d0snþK−k , sn−1þK−k , kðx
−Þ > 0, (A4) 

where d0snþK−k , sn−1þK−k , kðx
−Þ is the left derivative of dsnþK−k , sn−1þK−k , kðxÞ at x, 

and either lkðxÞ ¼ lkþ1ðxÞ is the joint position of the two workers during 
cycle n at the end of the previous blockage interval, or, in the case where 
there is no such previous blockage interval, lkðxÞ ¼ xn−1, k−1ðW, r, sÞ and 
lkþ1ðxÞ ¼ xn−1, kðW, r, sÞ are the initial positions of worker k and worker 
kþ 1, respectively, at the beginning of cycle n.

Example A.1. Consider a BB sequencing problem ðW, rÞ, with iden-
tical work rates that are equal to one for two workers, i.e., r ¼ ð1, 1Þ
and �r1 ¼

r1
r2
¼ 1, and with two piecewise linear orders (see Section 3.5) 

to be processed, W ¼ ðWjÞj¼1, 2, with joint break points X ¼ f1
3 , 2

3 , 1g
and representing vectors A1 ¼ ½

1
3 , 1

2 , 1� and A2 ¼ ½
1
6 , 1

2 , 2
3�: Consider the 

sequence s ¼ f1, 2g, thus j ¼ 1 and j0 ¼ 2: The following Table 2
presents the functions used in Lemma A.2 in order to characterize the 
blockage obtained. Since the first cycle ends with blockage, the entire 
work is completed in a single cycle. As shown in the table, several 
intervals are distinguished, depending on whether Conditions (A3) or 
(A4) are met, which in turn determine two blockage intervals during 
the single cycle, one interval at the beginning and the other at the end 

Table 2. The functions used in Lemma A.2.

interval x 2 0, 1
3

� �
x 2 ½13 , 2

3Þ x 2 ½23 , 5
6� x 2 ð56 , 1�

WjðxÞ x x
2þ

1
6

3x
2 − 1

2
3x
2 − 1

2

Wj0 ðxÞ
x
2 x − 1

6
x
2þ

1
6

x
2þ

1
6

dj0 , j, 1ðxÞ
x
2 − x

2þ
1
3 x − 2

3 x − 2
3

l1ðxÞ ¼ l2ðxÞ 0 1
3

1
3

1
3

Cond. (A3) True False False True

Cond. (A4) True False True True

Blockage True False False True

Contribution to BI 1
10 0 0 1

10
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of the cycle. The contribution of each blockage interval I to BIðW, r, sÞ
is d1, 2ðIÞ

TWðWÞ¼
1=6

1þ2=3 ¼
1

10 :

Lemma A.2 may also be used to analyze general blockage cases, in 
which worker k is not the most downstream worker blocked by worker 
kþ 1: This is done by defining for each blocked worker kþ 1 a virtual 
order type with workload distribution Ŵ increased from their actually 
processed order type W exactly so that this worker is no longer 
blocked by the next downstream worker kþ 2: Then Lemma A.2 may 
be applied recursively from worker K − 1 back to worker 1 using vir-
tual order types to test whether each worker k, now potentially the 
most downstream blocked worker, is actually blocked by worker kþ 1:

The following result provides an exact analytic expression, in the 
case of quadratic distributions and two workers, for the work capacity 
loss due to blockage, thus for the BI, and for the hand-off positions for 
each cycle n. 

Proposition A.1. For a sequencing problem ðW, rÞ with two workers, 
quadratic Wj and a sequence s, the work capacity loss due to blockage 
BLðW, r, sÞ ¼

PJ−1
n¼1 Dn, where Dn is recursively given, together with the 

workload xn accomplished by worker 1 during cycle n ¼ 1, 2, :::, J − 1, 
by the displayed Dn, xn               

for j ¼ sn, j0 ¼ snþ1, dmax
j0 , j, 1 � dj0 , j, 1

d0
j0 , j, 1
ð0Þ

−d00
j0 , j, 1
ð0Þ

 !

and x0 ¼ 0:

Additionally, the hand-off positions xnðW, r, sÞ satisfy 
xn ¼Wj0 ½xnðW, r, sÞ�, and whenever Dn > 0, the unique blockage inter-
val In ¼ ðyn1, yn2Þ during cycle n satisfies Dn ¼ dj0 , j, 1ðInÞ ¼ dj0 , j, 1ðyn2Þ − 
dj0 , j, 1ðyn1Þ for yn1 satisfying dj0 , j, 1ðyn1Þ ¼ �r1xn−1 and 

yn2 ¼

d0j0 , j, 1ð0Þ
−d00j0 , j, 1ð0Þ

, 0 < d0j0 , j, 1ð0Þ < −d00j0 , j, 1ð0Þ, dmax
j0 , j, 1 > �r1xn−1

1, otherwise:

8
><

>:

The following example demonstrates Proposition A.1 and summa-
rizes the preliminary analysis of this section. 

Example A.2. Consider a BB sequencing problem ðW, rÞ, with iden-
tical work rates that are equal to one for two workers, i.e., r ¼ ð1, 1Þ
and �r1 ¼ r1=r2 ¼ 1, and with three orders to be processed, W ¼

ðWjÞj¼1, 2, 3, such that

W1ðxÞ ¼ x 1 −
x
2

� �

, W2ðxÞ ¼ x
1þ x

2

� �

, W3ðxÞ ¼
x
2

, 

as shown in the left graph of Figure 10.
Suppose that the chosen processing sequence for these orders is 

1! 2! 3, i.e., s ¼ ð1, 2, 3Þ: Then, in the first cycle, worker 2 proc-
esses order 1 and worker 1 processes order 2, and both start at position 
x ¼ 0, i.e., x0ðW, r, sÞ ¼ 0: Cycle 1 has cycle time of CT1 ¼

W1ð1Þ−W1ð0Þ
r2

¼ 1
2 : For this cycle, the cumulative workload difference func-

tion d2, 1, 1ðxÞ ¼ �r1W1ðxÞ − W2ðxÞ ¼ x 1
2 − x
� �

, as shown in Figure 10, is 
concave and achieves its maximal value of dmax

2, 1, 1 ¼
1

16 > 0 at xmax ¼ 1
4 :

Therefore, worker 1 has their first blockage interval I1 ¼ ð0, xmaxÞ start-
ing immediately at the beginning of the cycle and ending at position 
xmax, with no blockage occurring from that point until the end of the 
cycle, and the contribution of this blockage interval to the work cap-
acity loss BLðW, r, sÞ is D1 ¼ d2, 1, 1ðI1Þ ¼ dmax

2, 1, 1 − d2, 1, 1ð0Þ ¼ 1
16 (the 

details for this calculation are given in Proposition A.1). Worker 1 ends 
the cycle at the position x for which their cumulative workload distribu-
tion function W2ðxÞ is equal to x1 � �r1W1ð1Þ − dmax

2, 1, 1 ¼
7

16 , i.e. x ¼

3
ffiffi
2
p

−2
4 � 0:561: So this is the hand-off position x1, 1ðW, r, sÞ at which 

worker 2 takes order 2 from worker 1, worker 1 takes order 3 at pos-
ition x ¼ 0, and cycle 2 initiates. It follows that cycle 2 has cycle time of 
CT2 ¼

W2ð1Þ−W2ðx1ðW, r, sÞÞ
r2

¼
W2ð1Þ−x1

r2
¼ 9

16 : For this cycle, the cumulative 
workload difference function d3, 2, 1ðxÞ ¼ �r1W2ðxÞ − W3ðxÞ ¼ x2

2 is con-

vex with d3, 2, 1ð1Þ > �r1x1 ¼
7

16 and d3, 2, 1

ffiffi
7
8

q� �

¼ 7
16 , therefore worker 

1 has their second blockage interval I2 ¼
ffiffi
7
8

q

, 1
� �

starting from position 

x ¼
ffiffi
7
8

q
� 0:935 and ending at position x ¼ 1 at the end of the cycle, 

thus the contribution of this blockage interval to the work capacity loss 

BLðW, r, sÞ is D2 ¼ d3, 2, 1ðI2Þ ¼ d3, 2, 1ð1Þ − d3, 2, 1

ffiffi
7
8

q� �

¼ 1
16 (again, this 

follows from Proposition A.1). Consequently, the second hand-off 

Figure 10. Three-order blockage example.

ðDn, xnÞ ¼

ðdmax
j0 , j, 1 − �r1xn−1,�r1Wjð1Þ − dmax

j0, j, 1Þ, 0 < d0j0 , j, 1ð0Þ < −d00j0 , j, 1ð0Þ, dmax
j0, j, 1 > �r1xn−1

ðdj0 , j, 1ð1Þ − �r1xn−1, Wj0 ð1ÞÞ,
:ð0 < d0j0 , j, 1ð0Þ < −d00j0 , j, 1ð0Þ, dmax

j0 , j, 1 > �r1xn−1Þ

and dj0 , j, 1ð1Þ > �r1xn−1
ð0,�r1ðWjð1Þ − xn−1ÞÞ, otherwise;

8
>>><

>>>:
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position is x2, 1ðW, r, sÞ ¼ 1, at which point both workers complete proc-
essing their respective orders. Cycle 3 therefore has cycle 
time CT3 ¼

W3ð1Þ−W3ð1Þ
1 ¼ 0:

To summarize the example, the MS for this sequence is 
P3

n¼1 CTn ¼ 1 1
16 , the total workload of the three orders is TWðWÞ ¼

P3
j¼1 Wjð1Þ ¼ 2, and the makespan work capacity is MCðW, r, sÞ ¼

1
2þ

9
16

� �
ð1þ 1Þ þ 0 � 1 ¼ 2 1

8 , therefore the work capacity loss due to 
blockage is BLðW, r, sÞ ¼ MCðW, r, sÞ − TWðWÞ ¼ 1

8 : Note that the two 
blockage intervals I1, I2 contribute equally to BLðW, r, sÞ: Finally, the 
blockage inefficiency for this sequence is BI ¼ 1

16 :

Appendix B: Proofs

Proof of Proposition 2.1. Using Definitions 2.2 and 2.3, for any 
sequencing problem ðW, rÞ and any sequence s, 

BIðW, r, sÞ ¼
MCðW, r, sÞ

TWðWÞ
− 1 ¼

PJ
n¼1CTnðW, r, sÞ

PK
k¼maxf1, nþK−Jgrk

� �

TWðWÞ
− 1

�

PJ
n¼1CTnðW, r, sÞ

PK
k¼1rk

TWðWÞ
− 1

(B1) 

¼
MSðW, r, sÞ

TWðWÞ=
PK

k¼1rk
− 1 ¼ MSIðW, r, sÞ:

Denote by sBI the sequence that minimizes the BI and by sMS the 
sequence that minimizes the MS (and the MSI). Therefore,

0 � MSIðW, r, sMSÞ − BIðW, r, sMSÞ

� MSIðW, r, sMSÞ − BIðW, r, sBIÞ

¼ mins MSIðW, r, sÞ − mins BIðW, r, sÞ

�

PJ
n¼1CTnðW, r, sBIÞ

TWðWÞ=
PK

k¼1rk
− 1

 !

−

PJ
n¼1CTnðW, r, sBIÞ

PK

k¼maxf1, nþK−Jg
rk

PK

k¼1
rk

TWðWÞ=
PK

k¼1rk
− 1

0

B
@

1

C
A

¼

PJ
n¼maxf1, J−Kþ2gCTnðW, r, sBIÞ 1 −

PK

k¼nþK−J
rk

PK

k¼1
rk

 !

TWðWÞ=
PK

k¼1rk

¼

PJ
n¼maxf1, J−Kþ2g

WsBI
n
ð1Þ−WsBI

n
ðxn−1, K−1ðW, r, sBIÞÞ

rK
1 −

PK

k¼nþK−J
rk

PK

k¼1
rk

 !

TWðWÞ=
PK

k¼1rk

�

PJ
n¼maxf1, J−Kþ2g

WsBI
n
ð1Þ

rK

TWðWÞ=
PK

k¼1rk
¼

XK

k¼1

rk

rK

 !
XJ

n¼maxf1, J−Kþ2g

WsBI
n
ð1Þ

TWðWÞ

�
XK

k¼1

rk

rK

 !

minfJ, K − 1g
max1�j�J Wjð1Þ

TWðWÞ
, 

where the first inequality is inequality (B1) for s ¼ sMS, and the second 
and third inequalities follow from the definitions of sMS, sBI and 
Definition 2.3 since BIðW, r, sBIÞ � BIðW, r, sMSÞ and MSðW, r, sMSÞ �

MSðW, r, sBIÞ, respectively. The two subsequent equalities follow since 
the first maxf0, J − K þ 1g terms of each of the two sums over cycles n 
in the fourth line in this chain of inequalities are identical, and from 
Equation (2.1), respectively. The fourth inequality follows by omitting 
the two negative terms, and the last inequality follows by replacing each 
total workload by the maximal total workload over all orders in the 
sequence. Finally, when fixing a positive lower and upper bound on each 
order’s total workload, the last expression in this chain approaches 
zero as the number of orders increases. Therefore, the difference 
minsMSIðW, r, sÞ − minsBIðW, r, sÞ approaches zero since it is non-nega-
tive and has an upper bound that approaches zero. It follows that when 
the number of orders is large, any sequence that minimizes the BI over 
all sequences approximately achieves the minimum MSI over all 

sequences. Moreover, since the total workload TWðWÞ and the work 
rates r are independent of the sequence of orders, any such sequence also 
approximately achieves the minimum MS over all sequences.                 �

Proof of Proposition 2.2. By Equation (2.1), since 
CTnðW, r, sÞ � Wsn ð1Þ

rK 
for any cycle n, Equation (2.3) implies

MCðW, r, sÞ �
XJ

n¼1

Wsnð1Þ
rK

XK

k¼1
rk ¼

PK
k¼1rk

rK
TWðWÞ, 

thus BIðW, r, sÞ �
PK−1

k¼1
rk

rK
: To see that this bound is tight, consider the 

K-order sequencing problem where W1ðxÞ has W1ð1Þ > 0 and WjðxÞ ¼
0 for j ¼ 2, :::, J and x 2 ½0, 1� and the chosen processing sequence is 
1! 2! :::! K, i.e. s ¼ ð1, 2, :::, JÞ: Then, in the first cycle worker K 
processes order 1 and determines CT1ðW, r, sÞ ¼ W1ð1Þ−0

rK
¼

W1ð1Þ
rK

, work-
ers 1, :::, K − 1 process orders 2, :::, J, respectively, and, being blocked 
throughout the cycle, end at x1ðW, r, sÞ ¼ 1: All the remaining cycles 
n ¼ 2, :::, J have CTnðW, r, sÞ ¼ 0−0

rK
¼ 0: Therefore,

BIðW, r, sÞ ¼
W1ð1Þ

rK
�
PK

k¼1rk þ 0
W1ð1Þ þ 0

− 1 ¼

PK−1
k¼1 rk

rK
:

Proof of Lemma A.1. Consider any cycle n ¼ 1, 2, :::, J − 1 and 
worker k 2 fmaxf1, nþ K − Jg, :::, K − 1}, and let j ¼ sn−1þK−k and 
j0 ¼ snþK−k: Condition (A1) is equivalent to �rk½WjðxÞ − 
Wjðxn−1, kðW, r, sÞÞ� �Wj0 ðxÞ − Wj0 ðxn−1, k−1ðW, r, sÞÞ, which means that 
if workers k, kþ 1 were to reach position x 2
½xn−1, kðW, r, sÞ, xn, kþ1ðW, r, sÞ� from their respective starting positions, 
namely xn−1, k−1ðW, r, sÞÞ for worker k and xn−1, kðW, r, sÞ for worker 
kþ 1, the amount of work, �rk½WjðxÞ − Wjðxn−1, kðW, r, sÞÞ�, that could 
be potentially accomplished by worker k is at most the required 
amount of work, Wj0 ðxÞ − Wj0 ðxn−1, k−1ðW, r, sÞÞ, i.e., worker k is not 
blocked by worker kþ 1 up to position x. Since this holds for all x 2
½xn−1, kðW, r, sÞ, xn, kþ1ðW, r, sÞ�, no blockage occurs throughout the 
cycle.                                                                                �  

Proof of Lemma A.2. Let j ¼ sn−1þK−k and j0 ¼ snþK−k: Condition 
(A3) is equivalent to �rkðWjðxÞ − Wjðl2ðxÞÞÞ > Wj0 ðxÞ − Wj0 ðl1ðxÞÞ, 
which means that while the workers are moving to position x 2
ðxn−1, kðW, r, sÞ, xn, kþ1ðW, r, sÞÞ from their respective starting positions, 
lkðxÞ for worker k, the amount of work, �rkðWjðxÞ − Wjðl2ðxÞÞÞ, that 
can be potentially accomplished by worker k is larger than the required 
amount of work, Wj0 ðxÞ − Wj0 ðl1ðxÞÞ: This is necessary for blockage to 
occur at position x, as otherwise worker k will not be able to reach the 
position of worker kþ 1: Adding Condition (A4), both conditions are 
together sufficient for blockage at position x because Condition (A4)
means that this positive work difference is increasing also at position x. 
Note that even if Condition (A3) holds, violation of Condition (A4)
implies that blockage does not occur at x. This is the case because 
Condition (A3) implies that the two workers are positioned at x simul-
taneously, but violation of Condition (A4) implies that such blockage 
will no longer hold when the two workers infinitesimally proceed with 
their work. This shows that the two conditions are together necessary 
and sufficient for blockage to hold at position x.                           �  

Proof of Proposition 3.1. Consider any sequence s. Since for 
each cycle n ¼ 1, 2, :::, J − 1, worker k 2 fmaxf1, nþ K − Jg, :::, K − 1 
and j ¼ sn−1þK−k and j0 ¼ snþK−k,

max
0�x�1

dj0 , j, kðxÞ ¼ max
0�x�1

�rk �WjðxÞ − �Wj0 ðxÞ
� �

� max
0�x�1

�WðxÞ − �WðxÞ
� �

¼ 0

� �rk �Wðxn−1, kð �W , r, sÞ − �Wðxn−1, k−1ð �W , r, sÞÞÞ, 

the conclusion follows from Lemma A.1.                                    �
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Proof of Proposition 3.2. Define the function f :

½0, �Wð1Þ�Kþ1
! ½0, �Wð1Þ�Kþ1 by f0ðyÞ ¼ 0, fKðyÞ ¼ �Wð1Þ and fkðyÞ ¼

yk−1 þ
rk
rK
½ �Wð1Þ − yK−1� for all k ¼ 1, :::, K − 1 and all y. By Equation 

(A2), the function f maps the cumulative workloads at hand-off n − 1 
to the cumulative workloads at hand-off n, i.e., ð �W ½xn, kð �W , r, sÞ�, k ¼
0, :::, KÞ ¼ f ð �W ½xn−1, kð �W , r, sÞ�, k ¼ 0, :::, KÞ: Note that for �rk < 1 for 
all k ¼ 1, :::, K − 1, f ðyÞ is a contraction mapping because

f ðy1Þ − f ðy2Þj j ¼
XK−1

k¼1
ðy1

k−1 − y2
k−1Þ −

rk

rK
ðy1

K−1 − y2
K−1Þ

�
�
�
�

�
�
�
�

�
XK−2

k¼1
ðy1

k − y2
kÞ þ

maxk0¼1, :::, K−1 rk0

rK

� �

jy1
K−1 − y2

K−1j

�
�
�
�

�
�
�
�

�
XK−2

k¼1
y1

k − y2
k

�
�

�
�þ

maxk¼1, :::, K−1 rk

rK

� �

jy1
K−1 − y2

K−1j

<
XK−1

k¼1
y1

k − y2
k

�
�

�
�

¼ y1 − y2j j:

Applying a fixed-point theorem, the hand-off position xnð �W , r, sÞ
converges to the steady-state hand-off position x�ð �WÞ as the number 
of orders J approaches infinity, and the convergence rate is exponential. 
�  

Proof of Proposition 3.3. Fix a sequence s. To see (a), note that 
for any pair of orders processed in cycle n with order types Wj, Wj0 2

H�r , W0 for j ¼ sn−1þK−k processed by worker k 2 fmaxf1, nþ K − 
Jg, :::, K − 1g and j0 ¼ snþ1 by worker kþ 1,

maxxn−1, kðW, r, sÞ�x�xn, kðW, r, sÞ dj0 , j, kðxÞ
¼ maxxn−1, kðW, r, sÞ�x�xn, kðW, r, sÞ �rkWjðxÞ − Wj0 ðxÞ

� �

� maxxn−1, kðW, r, sÞ�x�xn, kðW, r, sÞ �rW0ðxÞ − �rW0ðxÞ
� �

¼ 0 � �rk Wjðxn−1, kðW, r, sÞÞ − WsnþK−k ðxn−1, k−1ðW, r, sÞÞ
� �

, 

which implies by Lemma A.1 that no blockage occurs during cycle n.
To see (b), first note that for any order type Ŵ 62 H�r , W0 , there 

exists 0 < x0 � 1 such that either (i) Ŵðx0Þ > W0ðx0Þ, or (ii) Ŵðx0Þ <
�rW0ðx0Þ: In case (i), considering W ¼ ðŴ ,�rK−1W0Þ with j ¼ s1 ¼ 1 for 
worker k ¼ K − 1 and j0 ¼ s2 ¼ 2 for worker K,

max0�x�1 dj0 , j, kðxÞ � dj0 , j, kðx0Þ ¼ �rkŴðx0Þ − �rkW0ðx0Þ > �rkW0ðx0Þ
−�rkW0ðx0Þ ¼ 0, 

thus, since x0, kðW, r, sÞ ¼ 0 for all k ¼ 0, :::, K − 1, by Lemma A.1, 
there is blockage during the first cycle. In case (ii), denoting by k 
the most downstream worker for which �rk ¼ �r , and considering 
W ¼ ðW0, :::ðK − k timesÞ:::, W0, ŴÞ with j ¼ s1þK−k ¼ 1þ K − k for 
worker k and j0 ¼ s2þK−k ¼ 2þ K − k for worker kþ 1,

max0�x�1 dj0 , j, kðxÞ � dj0 , j, kðx0Þ ¼ �rkW0ðx0Þ − Ŵðx0Þ > �rW0ðx0Þ
−�rW0ðx0Þ ¼ 0, 

thus again, by Lemma A.1, there is blockage during the first cycle.    �

Proof of Proposition 3.4. The direction that if the algorithm con-
cludes the answer yes then it is in fact yes follows directly from 
Proposition 3.3. For the other direction, suppose that the algorithm 
concludes the answer no, i.e., there exists an order Wj0 in the set W 
and position x0 2 ½0, 1� such that Wj0 ðx0Þ < �rW0ðx0Þ: Let j be an order 
in W such that Wjðx0Þ ¼W0ðx0Þ, denote by k the most downstream 
worker for which �rk ¼ �r , and consider a sequence s in which the first 
K − kþ 1 orders are ðWj, :::ðK − k timesÞ:::, Wj, Wj0 Þ: Then

max0�x�1 dj0 , j, kðxÞ � dj0 , j, kðx0Þ ¼ �rWjðx0Þ − Wj0 ðx0Þ > �rW0ðx0Þ
−�rW0ðx0Þ ¼ 0, 

thus, by Lemma A.1, there is blockage during the first cycle. By 
Definition 3.2, W cannot in fact be a subset of some maximal universal 

no-blockage set because this would imply that any sequence s is a no- 
blockage sequence for ðW, rÞ: This proves the other direction.          �

Proof of Proposition 3.5. By definition, a sequence ssshp is sorted 
decreasingly by 

PK−1
k¼1 akx�k for some aK−1 � ::: � a1 > 0: Since 

x�kðWs�1 Þ � ::: � x�kðWs�J Þ for all workers k ¼ 1, :::, K, x�kðWssshp
1
Þ � ::: �

x�kðWssshp
J
Þ for all workers k ¼ 1, :::, K: In fact, s� is a ssshp sequence for 

all aK−1 � ::: � a1 > 0: Note that all cycles n ¼ 1, 2, :::, J − 1 have the 
same cycle time of 

CTn ¼
a − Wssshp

n
ðx�K−1ðWssshp

n
ÞÞ

rK
¼

a − a

PK−1

k0¼1
rk0

PK

k¼1
rk

rK
¼

a
PK

k¼1rk
:

At any such cycle n, each worker k ¼ 2, :::, K starts at the (k–1)th 
component of the steady-state hand-off position of order ssshp

Kþn−k, 
x�k−1ðWssshp

Kþn−k
Þ for which 

Wx�Kþn−k
ðx�k−1ðWssshp

Kþn−k
ÞÞ ¼ a

Pk−1
k0¼1rk0

PK
k¼1rk

,  

processes this order, and ends at the kth component of the steady-state 
hand-off position of this order, x�kðWssshp

Kþn−k
Þ for which 

Wx�Kþn−k
ðx�kðWssshp

Kþn−k
ÞÞ ¼ a

Pk
k0¼1rk0

PK
k¼1rk

:

The fact that the orders are with decreasing x�kðWjÞ for all workers 
k ¼ 1, :::, K − 1 indeed ensures that no blockage occurs in any cycle. �  

Proof of Proposition 3.6. This follows by Corollary A.1 since for 
every cycle n ¼ 1, :::, J − 1, all workers k 2 fmaxf1, nþ K − Jg, :::, K − 
1g, and all x and j ¼ sn−1þK−k and j0 ¼ snþK−k, dj0 , j, kðxÞ is increasing 
in the work rate ratio �rk, so if the ordered pair Wj followed by Wj0 has 
strong pairwise no-blockage given some �rk then this will hold also for 
any smaller �rk: �  

Proof of Proposition 3.7. Suppose that s is a first-order distribu-
tional dominance sequence. Since for each cycle n ¼ 1, 2, :::, J − 1, all 
workers k 2 fmaxf1, nþ K − Jg, :::, K − 1g, and j ¼ sn−1þK−k and 
j0 ¼ snþK−k,

max0�x�1 dj0 , j, kðxÞ ¼ max0�x�1 �rkWjðxÞ − Wj0 ðxÞ
� �

� max0�x�1 WjðxÞ − Wj0 ðxÞ
� �

� 0, 

the conclusion follows from Corollary A.1. That the converse holds 
when r1 ¼ ::: ¼ rK follows from Definition 3.5.                            �

Proof of Proposition 3.8. Fix L, P and a sequencing problem 
ðW, rÞ with piecewise linear W under L, P. Let C be the total number 
of order types given L, P, and recall that each order type has total 
workload of at most one. Any sequence slex consists of at most C sub- 
sequences of consecutive identical orders. By Proposition 3.7, since 
�rk � 1 for k ¼ 1, :::, K − 1, the number of blockage cycles under slex is 
at most C. Each such cycle n contributes to BLðW, r̂ , slexÞ at most 

CTnðW, r, slexÞ
XK−1

k¼1
rk �

Wslex
n
ð1Þ

rK

XK−1

k¼1
rk �

XK−1

k¼1

rk

rK
� K − 1:

Therefore BIðW, r, slexÞ �
CðK−1Þ
TWðWÞ , of which the right-hand side 

approaches zero as J approaches þ1 since its numerator does not 
depend on J and its denominator approaches þ1: �  

Proof of Proposition A.1. . 
Consider K ¼ 2 workers and cycle n, and denote j ¼ sn and j0 ¼

snþ1: By Lemma A.2, blockage occurs during cycle n if and only if 
there exists x 2 ðxn−1ðW, r, sÞ, 1Þ such that dj0 jðxÞ > �r1Wjðxn−1ðW, r, sÞÞ
and d0j0 jðxÞ > 0: For quadratic orders, the cumulative workload differ-
ence function dj0 jðxÞ is the quadratic function 
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x �r1bj − bj0 þ �r1ðaj − bjÞ − ðaj0 − bj0 Þ
� �

x
� �

:

Therefore blockage occurs during cycle n if and only if one of the 
following two cases holds: (i) [0 < d0j0 , jð0Þ < −d00j0 , jð0Þ and dmax

j0 , j >

�r1Wjðxn−1ðW, r, sÞÞ�, or (ii) [not (i) and dj0 jð1Þ > �r1Wjðxn−1ðW, r, sÞÞ]. 
In both cases there is a unique blockage interval ½�x, ~x� satisfying 

dj0 , jð�xÞ ¼ �r1Wjðxn−1ðW, r, sÞÞ, and ~x ¼
d0

j0 j
ð0Þ

−d00
j0 j
ð0Þ < 1 in case (i) and ~x ¼ 1 

in case (ii). Therefore the hand-off position of cycle n is xnðW, r, sÞ ¼ 1 
in case (ii), and is determined in case (i) from the no-blockage interval 
½~x, 1� such that Wj0 ðxnðW, r, sÞÞ − Wj0 ð~xÞ ¼ �r1ðWjð1Þ − Wjð~xÞÞ: The 
contribution of cycle n to BLðW, r, sÞ is Dn � dj0 , jð~xÞ − dj0 , jð�xÞ, thus 
substitution of �x, ~x for the various cases establishes the corresponding 
expressions as given in the proposition. A similar substitution also 
establishes the expressions for xn, the workload accomplished by 
worker 1 during cycle n.                                                        �  
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