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ABSTRACT

Bucket Brigade (BB) is a common approach for dynamic work-sharing in order-picking lines.
Differently from typical analysis, we assume heterogeneous orders, which creates blockages and
reduced efficiency. The problem is how to sequence entering orders with the aim of minimizing
this potential inefficiency. The proposed framework models order-picking lines with workload dis-
tributed along the picking aisle according to the number of items to be picked in each pick face.
We propose a measure for quantifying the generated blockage inefficiency (BI) as a proxy for the
makespan. As the Bl depends on the sequence of orders, several strategies are proposed to iden-
tify sequences with no-blockage or with minimal Bl. We provide several practical sequencing poli-
cies. Sequencing based on no-blockage notions and steady-state hand-off positions is proved
useful, and no-blockage is implied by first-order distributional dominance sequencing. Traveling
salesman problem and Hamiltonian path modeling is proposed as an exact computational method
of item-specific sequences with minimal or no blockage in a strong sense. A simple policy ensures
low BI for large sets of orders, for which we show an asymptotic result: the Bl of any efficient
sequence approaches zero in the limit as the sequence length tends to infinity. In general,
sequencing orders is a practically relevant and effective managerial strategy, as it typically sub-
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stantially reduces the Bl and often eliminates it entirely.

1. Introduction

Modern environments of order-picking apply work-sharing
methods, whereby multiple cross-trained workers share the
sequential execution of multiple operations on a given order
to complete a product or service. Such environments
become quite complex when demand is customer specific
and orders are heterogeneous, as the system control
becomes more challenging and operational performance
may deteriorate. Possibly the most commonly analyzed
work-sharing approach in serial lines is the Bucket Brigade
(BB) proposed by Bartholdi and Eisenstein (1996).
According to BB in order-picking lines, whenever the last
downstream worker in the picking aisle completes an order,
the worker moves back and takes over the order from the
immediate upstream worker, this upstream worker continues
similarly with the next upstream worker, and the procedure
continues until the first upstream worker starts processing a
new order.

In general, serial lines suffer from throughput loss due to
halting, starvation and blockage. The former two issues
mostly do not exist in a fully cross-trained BB system,
whereas the latter occurs when workers are not allowed to
overtake each other. Most of the relevant literature, as well
as the current article, assume that overtaking is not allowed.

This stems from the fact that overtaking is very difficult to
apply in real-world order-picking in forward storage areas,
due to technological reasons and cost of footprint. Bartholdi
and Eisenstein (1996) suggested conditions ensuring a self-
balancing BB line under the assumptions of uniform orders,
full cross-training of the workers, no restriction on the
hand-off point (the point in which a job is handed from
one worker to another), and a completely deterministic
nature of the system. They show that when the workers are
arranged from slowest to fastest, the line does not suffer
from blockages, thus achieving the maximal theoretical
throughput rate. Additionally, they show that under the
above assumptions the hand-off positions converge to a con-
stant steady-state, consequently each worker specializes on
executing their own work segment for each order.

One of the common assumptions in the BB literature is
that of homogeneous orders, namely identical orders with
planned workload uniformly distributed along the line/aisle.
Homogeneous orders may include the possibility of stochas-
tic workload, in that the planned workload in each pick face
along the aisle has the same probabilistic distribution, but
its realization may vary across orders. In this article we fol-
low Hong et al. (2016) and Fibrianto and Hong (2019) by
relaxing the assumption of homogeneous orders and consid-
ering heterogeneous orders, i.e., orders that differ from one
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Figure 1. Sequencing heterogeneous orders.

another in their planned total workload or its distribution
along the line. Such heterogeneity generates potential block-
ages that may be eliminated via sequencing. The following
small example demonstrates the importance of order
sequencing. Say there is a picking aisle with 90 pick faces
and two orders to pick. Order 1 contains 60 items to be
picked from pick faces 1 to 60, and order 2 contains 30
items to be picked from pick faces 61-90. The pick time is
one time unit per pick. As demonstrated in Figure 1, two
pickers are working in the aisle under a BB regime. We
assume that the walking time between picks is negligible
and that the pickers work at the same work rate. Consider a
sequence in which order 1 (shown in red) precedes order 2
(shown in blue). Solid lines depict the planned workload
that was already accomplished, and dash lines the remaining
planned workload. In this case, as seen in Figure 1(a), the
downstream worker (D) picks order 1, while the upstream
worker (U) is blocked. After 60 time units, the downstream
worker completes picking order 1, and continues to the end
of the line to submit the order. Then a hand-off occurs at
pick face 61, where the downstream worker starts picking
order 2, while the upstream worker goes to the start of the
line to take the next order (if any). The total pick time of
the two orders (the total time of the two cycles) equals 90
time units. Now consider the opposite sequence of the
orders, namely order 2 precedes order 1. Figure 1(b) shows
both workers picking simultaneously, the downstream
worker with order 2 and the upstream worker with order 1.
After 30 time units, the downstream worker completes pick-
ing order 2 and returns to the upstream worker. A hand-off
occurs at pick face 31, where the downstream worker starts
picking order 1, while the upstream worker goes to the start
of the line to take the next order (if any). The total pick
time of the two orders is now equal to 60 time units, 33%
lower than in the previous sequence. The example suggests
that even when the two workers have the same, constant
work rate, the different planned workloads may lead to
potential blockages, which would be significantly affected by
the arrival sequence of the various orders into the line.

In general, blockages impair the line’s throughput, due to
the partial utilization of the blocked workers’ potential work
rates. Therefore, although a main motivator for implement-
ing a BB line is its successful ability to solve blockage prob-
lems stemming from random variability in the process when
orders are homogeneous, BB lines are far from adequate in
handling blockage problems when the process involves sys-
tematic, planned for heterogeneity across the orders. Missing
from the literature is a general understanding of simple and
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Figure 2. General example illustrating an order-picking process with heteroge-
neous orders.

efficient operational policies for BB lines with heterogeneous
orders. This is the main contribution of this article.

We propose to investigate BB lines with given heteroge-
neous orders, further controlled using order sequencing.
Our proposed modeling approach fits common real-world
order-picking processes in forward storage areas, where each
order may contain a different set of Stock Keeping Units
(SKUs) / items resulting in different total picking require-
ments, or different workload distributions. As shown in
Figure 2, two pickers work in an aisle and the workload is
distributed according to the number of items to be picked at
each pick face.

Order heterogeneity generates potential blockages in BB
order-picking lines, as discussed above. The amount of
blockage is affected by the particular set of orders and the
exact sequence in which they enter the line. Two common
operational approaches to reducing blockages include order
batching and sequencing. The former determines the set of
orders and is applicable for order-picking, whereas the latter
determines the order sequence and is applicable in general.
In this article we concentrate on sequencing as the oper-
ational strategy given the set of orders, and our contribution
is to show that this is very effective in handling the blockage
problems. To this end, we propose a measure of Blockage
Inefficiency (BI), defined for a given sequence of orders as
the work capacity loss due to blockage divided by the total
workload for all orders. As this BI might be high or low
depending on the chosen sequence of orders, we propose to
solve a static sequencing problem for finding efficient
sequences that minimize the BI. We show that this objective
may be seen as a proxy for the minimization of the produc-
tion makespan (MS).

We demonstrate with simple examples the potentially
severe inefficiency that we might obtain, depending on the
work rates and the sequence of orders. Nevertheless, our
general conclusion is that the sequencing problem we for-
mulate is practically very relevant, as it typically substantially
reduces this inefficiency and often eliminates it entirely.



This is relevant when the number of orders is either small
or large.

To establish the above general conclusion, we propose
several sequencing policies. As preliminary analysis, we pro-
vide necessary and sufficient conditions for no-blockage and
for blockage during a cycle using a cumulative workload dif-
ference function that also takes into account the work rates.

Our first result concerns non-uniform identical orders,
for which we show that no-blockage in any cycle is guaran-
teed as long as the workers are positioned slowest to fastest.
This analysis leads to a generalization of Bartholdi and
Eisenstein’s (1996) steady-state hand-off positions to orders
with non-uniform distributions.

This approach is extended in several directions. We first
propose to check easily verifiable conditions on the given set
of orders, thus ensuring no-blockage in general. The analysis
is based on particular, nested notions of no-blockage. The
first, most demanding notion involves a set of order types
with universal no-blockage, in the sense that no blockage
occurs for any sequence of order types selected from the set.
Moreover, this set of orders is maximal in the sense that
including in the set any additional order type from outside
the set necessarily violates the universality requirement.
We provide an algorithm for determining the inclusion in
such a set of order types, which therefore ensures that any
sequence has no-blockage.

We then propose three sequencing policies. The first
sequencing policy concerns sorting the orders according to
non-increasing weighted average of steady-state hand-off
positions. Here we consider orders with identical total work-
load, but possibly different distributions. For such orders we
show that this sequencing policy can ensure no-blockage,
and demonstrate numerically that the policy -effectively
decreases the BI. The policy is also compared numerically to
the other two sequencing policies for general orders.

The second sequencing policy is based on a second, less
demanding notion of no-blockage. It involves a sequence of
orders with strong no-blockage, in the sense that no blockage
would occur when each consecutive pair of orders in the
sequence were processed alone. We show that first-order
distributional dominance is sufficient for strong no-block-
age, thus there is a wide opportunity for strong no-blockage.
We also propose an extension to general orders by solving a
Travelling Salesman Problem (TSP) formulation based on
strong no-blockage. In particular, Hamiltonian paths in the
zero cost subgraph are strong no-blockage sequences.

The third and last sequencing policy generates low BI
when the number of orders to be sequenced is relatively
large. This policy involves a sequence in which groups of
identical orders are ordered lexicographically according to
increasing total workload and then decreasing steady-state
hand-off position. We use the sequencing policy for piece-
wise linear orders, which are relevant e.g. in order-picking
processes (as in Figure 2). For such orders we demonstrate
substantial reductions in the BI, and also that for piecewise
linear order types with any given approximation level and
slowest to fastest assignment of the workers, the BI of any
efficient sequence approaches zero in the limit as the
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sequence length tends to infinity. This result is important
also because piecewise linear order types are a good approxi-
mation for the domain of all order types when the number
of break points is large. The analysis is supplemented by a
numerical experimentation which demonstrates how the
above three sequencing policies reduce the BI for general
orders.

In the remainder of the Introduction we review the rele-
vant literature on work-sharing systems and BB in particu-
lar. Systems that adopt work-sharing differ by the level of
worker cross-training, ranging from full cross-training where
all workers are capable of performing the whole task, to par-
tial cross-training where there is only some overlapping
between the capabilities of the workers. On the operational
side, Ostolaza et al. (1990) use the term Dynamic Line
Balancing (DLB) to describe predefined tasks that are shifted
dynamically between adjacent stations/workers based on the
state of the system. Hopp et al (2004) investigated these
issues in the context of achieving a low ratio of work-in-
process (WIP) to throughput. Besides the level of cross-
training, they investigated the line topology by studying
D-Skilled Chaining (DSC), which was initially coined by
Jordan et al. (2004), and Cherry Picking (CP). In CP, only
the bottleneck worker is assisted by the other workers, while
the cross-training under DSC is symmetric among the work-
ers, as each worker can help the adjacent upstream/down-
stream workers. The literature has also addressed other
variations of work-sharing systems, such as preemption by
which a task may be split between workers (McClain et al.,
2000), and processes in which machines are involved
(Zavadlav et al., 1996). We note that the scheduling litera-
ture typically does not address these issues, due to the
assumption taken in this literature that processing times are
not affected by item sequencing.

Following Bartholdi and Eisenstein (1996), several exten-
sions have been suggested (see Bratcu and Dolgui (2005) for
a review). In the deterministic domain with homogeneous
items, the BB system dynamics for two and three workers
was analyzed in Bartholdi et al. (1999). The chaotic behavior
of the hand-off point when the convergence condition does
not hold was studied in Bartholdi et al. (2009). Armbruster
and Gel (2006) relaxed the dominance assumption, and
studied a two-worker line in which one worker may be
faster than his neighbor in some part of the line, and slower
in the other part. They provided insights and operation
principles for various scenarios. Gurumoorthy et al. (2009)
analyzed the dynamics of a line with two workers, each hav-
ing an arbitrary, constant speed at each station. When con-
sidering discrete workstations, the results of the basic
continuous model approximately hold for large number of
stations, however, a different analysis is needed when the
number of stations is small. This issue was considered in
Lim and Yang (2009), who found conditions under which
two- and three-station lines maximize throughput for a
given number of stations. Bartholdi et al. (2006) applied the
BB principles in an in-tree network of sub-assembly lines.
Bratcu and Dolgui (2009) and Lim (2011) relaxed the com-
mon assumption of infinite worker walk back speed, where



440 Y. BUKCHIN ET AL.

the latter proposed a cellular configuration model. Lim and
Wu (2013) studied a U-line BB system with discrete stations.
In another direction, Armbruster et al. (2007) and Montano
et al. (2007) studied the effect of learning in BB systems,
where the latter suggested an alternative control rule named
modified-work-sharing. Some industrial case studies of BB
have been studied in Bartholdi and Eisenstein (2005), Lim
(2005) and De Carlo et al. (2013).

In the stochastic domain with homogeneous items,
Bartholdi et al. (2001) studied the performance of BB under
the assumption of stochastic processing times, and showed
that the throughput rate converges to its optimal value as
the number of stations increases. Buzacott (2002) considered
four-station and two-worker stochastic lines with or without
preemption and derived the optimal policy, which modifies
the non-preemptive BB rule. Bratcu and Dolgui (2009)
studied a BB system with stochastic performance rates via
simulations, assuming that both working and walk back
speeds are normally distributed. Hong (2014) derived an
analytic expression for the two-worker blocking congestion
in a circular-passage system under the assumptions of con-
stant worker speeds and probabilistic picks. In a later paper,
Hong et al. (2015) provided a closed-form expression to the
level of blocking for two extreme walk speed cases. Bukchin
et al. (2018) studied three variants of BB production lines
under the assumption of stochastic worker speeds: the trad-
itional BB line, BB with Overtaking allowed (BBO), and a
benchmark system of parallel workers. They showed that BB
lines may perform better than a comparable system with
parallel workers, and that the best configuration is BBO.
Additionally, they showed that slowest to fastest is not
always optimal when speeds are stochastic. Wang et al.
(2022) study a BB system with discrete work stations where
the time duration for each worker to process an item at a
station is exponentially distributed with a rate that depends
on the station’s work content and the worker’s work speed.
The general conclusion that BB lines are immune to sto-
chastic workloads even without sequencing is a direct conse-
quence of the assumption of homogeneous orders. In
contrast, our contribution is to show that sequencing poli-
cies are very much required when orders are heterogeneous.

Hong et al. (2016) and Fibrianto and Hong (2019) con-
sidered heterogeneous items in deterministic environments.
They developed a batching and sequencing Mixed-Integer
Programming (MIP) formulation to reduce blocking delays
in BB order-picking lines with work-content-dependent pick-
ing times. Integrating a “rolling horizon” implementation of
this Mixed-Integer Programming (MIP), they considered at
each step a small number of orders within a simulation with
stochastic picking times and compared the results with a ran-
dom policy. Our contribution compared with these papers is
to offer simple and optimal sequencing policies that typically
eliminate the BI almost entirely, and this is shown analytically
and numerically. Such policies may be used as substitutes or
in addition to batching operations.

The rest of this article is organized as follows. In Section
2 we present the model and propose our measure of BI for
a BB line with heterogeneous orders. In Section 3 we

propose several sequencing policies for reducing the BI, and
provide an evaluation of these policies using formal results,
examples and numerical studies. Section 4 discusses general-
izations and concludes. A preliminary analysis of no-block-
age and blockage sequences is included in Appendix A, and
all proofs are collected in Appendix B.

2. Model

We study a BB line (Bartholdi and Eisenstein, 1996) for
coordinating the efforts of several workers along a forward
storage order-picking aisle. The protocol of BB includes for-
ward (downstream) and backward (upstream) movements of
each worker along the line. During a forward movement,
the worker is involved in picking an order. Moving forward
ends for the most downstream worker upon reaching the
end of the line with a finished order, and ends for any other
worker upon meeting their immediate downstream worker
who is moving backward. When moving backward, the
worker does not hold any order. Moving backward ends for
the most upstream worker upon reaching the start of the
line, and ends for any other worker upon meeting their
immediate upstream worker who is moving forward. When
such a meeting occurs, the downstream worker takes the
order from the upstream worker and starts a forward move-
ment to continue processing it, and the upstream worker
starts a backward movement to take a different order from
an upstream worker or from the start of the line. Therefore,
the completion of an order by the most downstream worker
initiates a sequence of such meetings, which are together
called a hand-off event.

The work rate of each worker k=1,..,K, ie, the
amount of work that the worker can process in a unit of
time, is fixed at r, > 0. In line with most of the literature,
we assume that the time required for any worker to return
upstream is insignificant compared with the time required
to work downstream, thus all workers hand-off simultan-
eously and the duration of any hand-off event may be
ignored. The sequence of the workers along the line does
not change over time, as overtaking is not allowed. As a
result, each worker either proceeds at their own work rate
or at a reduced pace when blocked by the next downstream
worker. To be consistent with our focus on blockage (not
starvation) problems, we assume a continuous line, namely
that a hand-off can occur at any position along the line, and
without loss of generality, identify the line with the interval
[0, 1]. At time 0, a given set of heterogeneous orders is
ready to be processed at the start of the line. Order j=
1,2,...,] is identified by an order type, i.e., a bounded work-
load density function w; : [0,1] — R, for which the corre-
sponding cumulative workload distribution function, Wj(x),
is assumed to be well defined for any x € [0,1] as the inte-
gral of w;j(x) over [0, x]. Differently from probability distri-
butions, the total workload W;(1) may be above, equal or
below one. The permutation sequence of the orders, denoted
by s = (s1,...,57), where s; is the order at position j = 1,...,]
in the sequence, is given before production starts. We aim
at determining the appropriate sequence of orders s in order



to minimize the blockage inefficiency (formal definition pro-
vided below), thus a set of orders W ={W,j=1,..,J}
together with a vector of work rates r = (r,k=1,...,K)
will be referred to as a sequencing problem (W, r).

Fixing the sequence of the workers as 1 — 2 — ... = K,
we mostly assume a slowest-to-fastest configuration, i.e.,
r <..<rg and for k=1,...,K—1 denote the work rate

ratio of worker k to worker k+1 by 7, =-%. Given a

Tkt1
sequencing problem (W,r), for any sequence s, the nth

hand-off state of the system, x,(W,r,s) = (x, x(W,1,s),k =
1,...,K) for 0 < x,,(W,r,s) <1, defines the position along
the line of each worker k just before the nth hand-off for
n=12,..,] — 1. At these positions, worker k = max{1,n +
K —7J},....,K is with order s, x_t, and the most downstream
worker K has reached the end of the line, i.e., x, x =1 for
n=0,1,...,J. We assume xs(W,r,s) =0 for all worker
k=1,..,K—1 and any sequence s. Since worker K cannot
be blocked and always reaches the end of the line, the cycle
time, ie., the time elapsed between hand-off n—1 and
hand-off #, is always

W, (1) =

Ws,, (xn—l,K—l (W, r, 5))

CT,(W,r,s) =
Tk

(2.1)

Accordingly, we next define the system MS.
Definition 2.1. The system MS for sequence s is the total
time to complete processing J jobs,

J
MS(W,r,5) =Y _CT,(W,1,53).

n=1

(2.2)

Blockage may occur over any partial interval of the line
during any cycle n < J, depending on the work rates and
the type of the order held by each worker. Such blockages
create inefficiency, due to the reduced pace of any upstream
worker, which in turn generates longer cycle times, and con-
sequently a higher MS. The maximal amount of work poten-
tially accomplished by any worker is achieved when each
worker proceeds in their own work rate, i.e., when there is
no blockage. We next propose a measure to quantify this
blockage inefficiency. Minimizing this measure is then
shown to be a proxy for minimizing the MS.

Definition 2.2. The makespan work capacity for sequence s
is the maximal amount of work potentially accomplished by
the workers during the makespan, i.e. if there were no
blockages,

J K
MC(W,1,5) = > CT,(W,r,5) Yo on] @3
n=1 k=max{1, n+K-J}

Note that the most downstream worker K is busy in all
cycles, whereas any upstream worker k = 1,...,K — 1 is busy
in all but the cycles n > J — K + k. Now, defining the total
workload of all orders by

J
TW(W) =Y Wi(1), (2.4)
j=1
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the difference

BL(W,r,s) = MC(W,r,s) — TW(W) (2.5)

will be referred to as the work capacity loss due to blockage
for sequence s. Using these notions, we may define our
measure of inefficiency.

Definition 2.3. The BI for sequence s is

_ BL(W,1,5) _ MC(W,r,s) — TW(W)

BI(W,r,5) = W W) W W) (2.6)

We are interested in sequences s that guarantee low val-
ues of our inefficiency measure, BI(W,r,s). It is useful to
compare the BI to the MS Inefficiency (MSI), the ratio given
by the difference between the MS and the theoretical lower
bound for the MS divided by this lower bound, defined by

MS(W,r,s)
TW(W)/ Y
L:1CT,1(W, r,8)
CTW(W)/ Yk

MSI(W,r,s) =

>

while noting that

k=1"k

K
| CTL(W,r,9) (—Zkggﬁ;’ == )
BI(W,r,s) = -1

TW(W)/ ik
< MSI(W, 1,55).

For ] > K, excluding the sequence tail consisting of the
last K — 1 cycles in which not all workers are busy, the com-
ponents of the BI and the MSI are identical. This tail is neg-
ligible for practical sized sequences where J > K. Therefore,
minimizing the BI over all sequences is a proxy to minimiz-
ing the MS over all sequences. This is formalized by the fol-
lowing proposition.

Proposition 2.1. For any sequencing problem (W,r) with a
large number of orders, any sequence that minimizes the BI
approximately achieves minimum MS.

To compute the BI for a sequence s we apply for each
cycle a recursive procedure from worker K —1, the last
worker that can be blocked, back to worker 1. After calculat-
ing the contribution of each worker k to the BI, we modify
the order this worker processes by adding virtual work
exactly so that this worker is no longer blocked by the next
downstream worker. Then we proceed with this modified
order to calculate the contribution of worker k—1 to the
BI. More details are given in Appendix A.

Blockage inefficiency has a simple tight upper bound: the
X
K
The proof of the proposition shows that high inefficiency
occurs in particular when an order with large total workload

is followed by an order with a small total workload.

ratio of work rates, . This is stated in Proposition 2.2.
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Proposition 2.2. For any sequencing problem (W,r) and any

sequence s, an upper bound for BI(W,r,s) is Z’;}j * and this
bound is tight.

i
S
lar 7; when K =2, may therefore generate higher ineffi-
ciency. Nevertheless, due to order heterogeneity, blockages
in early cycles may alleviate blockages in later cycles.
Specifically, BI(W,r,s) is not always increasing with the

K-1
k=1 Tk
K

A higher work rate ratio , which equals in particu-

work rate ratio , and may even decrease from a posi-

tive value to zero. In particular, there exists a set of orders
W, a sequence s and r!,r?, where K =2, with 7] <7} such
that BI(W, r,s) > BI(W,r%,s) = 0.

A main subject of interest in our analysis will be sequen-
ces with no-blockage.

Definition 2.4. A sequence s has no-blockage for (W,r) if
BI(W,r,s) =0, ie., for any cycle n, no worker is blocked
by the subsequent downstream worker throughout the cycle.

3. Sequencing policies

Our approach leads to several sequencing policies, described
and analyzed in the subsections below.

3.1. Non-uniform identical orders

The simplest case in our analysis is where W =
(W,..,W) =W, ie, all orders are identical, say with type
W, but the workload may not be distributed uniformly
across the line. Clearly, there is no meaning to sequencing
of identical orders. However, given that we analyze the effect
of order heterogeneity, it is useful to ask as a starting point
whether identical orders with non-uniform distributions cre-
ate potential blockages. We show that such issues do not
arise. Intuitively, for this case, since at any position x the
instantaneous amount of work required by each worker is
the same, if the workers are ordered slowest-to-fastest,
blockage cannot occur at any position x. This intuition is
confirmed by the following no-blockage result.

Proposition 3.1. For any sequencing problem (W,r) with
work rate ratio 7, <1 for k=1,...,K — 1, any sequence has
no-blockage.

In steady-state, the hand-off position remains unchanged
across cycles. This leads us to propose the following defin-
ition, which generalizes Bartholdi and Eisenstein (1996)’s
definition for uniform, identical orders.

Definition 3.1. The steady-state hand-off position of type W
is x*(W) = [x}(W), .., xi(W)] given for all k = 1,...,K by’

'The max is relevant when W (x) is constant because the workload density is
zero.

x (W) = max{xk|w(xk) — W(l)%}

The following proposition shows that the no-blockage
property of non-uniform identical order sequences guaran-
tees the convergence to steady-state.

Proposition 3.2. For any sequencing problem (W,r) with
work rate ratio 7 <1 for all k=1,..,K—1 and any
sequence s, hand-off position n, x,(W,r,s), converges to the
steady-state hand-off position x*(W) as the number of orders
] approaches infinity, and the convergence rate is exponential.

Proposition 3.2 leads to the following important insight:
self-balancing is achieved so that each worker specializes on
repeatedly executing a fixed work segment. This implication
is due to the orders being identical rather than being
uniform.

3.2. Sequence-independent no-blockage

Two of the sequencing strategies we propose are based on
particular, nested notions of no-blockage. The following
approach is based on the first, most demanding no-blockage
notion, which therefore has the advantage of ensuring no-
blockage in a very wide set of scenarios. Recall the definition
of order types in the second paragraph of Section 2. A conse-
quence of our analysis is that if a system designer can affect
which order types may enter the line, for example by batching
orders, the approach described here suggests a way to ensure
efficiency without the need to worry about order sequencing.
Specifically, we investigate sets of order types for which no
blockage occurs in any sequence, which generalizes the case
of identical orders studied in the previous subsection. This is
formalized in the following definition we propose.

Definition 3.2. Given work rates 7, a set of order types sat-
isfies maximal universal no-blockage if:

(a) Universality: for any sequence of orders with order
types selected from the set, no blockage occurs in any
cycle; and

(b) Maximality: including in the set any additional order
type from outside the set necessarily violates the uni-
versality requirement (a), i.e., there would exist a
sequence of orders with order types selected from the
set including the additional order type, for which
blockage occurs in some cycle.

Our next result characterizes sets of order types satisfying
maximal universal no-blockage. Given any maximal work
by H; wo the set of all order types W such that W(x) €
[FW°(x), W(x)] for all x € [0,1]. Note that H; yo is non-
empty if and only if 7 < 1, i.e., a slowest to fastest configur-
ation of workers. There are infinitely many such sets, and
one of them is illustrated in Figure 3 for a linear (uniformly
distributed) order type WY, together with two possible non-
linear order types within this set. As shown in the figure,



IISE TRANSACTIONS 443

w(x)

W(x)
1.0

0.2

0.4 0.6 0.8
(a) cumulative workload

Figure 3. Set of order types satisfying maximal universal no blockage.
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Figure 4. Five-order subset of a maximal universal no-blockage set.

H; wo is a strict super-set of the set of all order types with
bounded workload density functions, i.e., such that w(x) €
[Fw°(x), w°(x)] for all x € [0, 1].

Proposition 3.3. For any maximal work rate ratio ¥ <1
and order type WO, the set of order types H; wo satisfies
maximal universal no-blockage.

The simple case described in Subsection 3.1 of non-uni-
form identical orders is always a subset of some maximal
universal no-blockage set Hz yo. In particular, when the
workers are identical, i.e., r; = ... = rx, the maximal univer-
sal no-blockage set H; o includes the single-order type W°.
Additionally, Proposition 3.3 directly implies the following
natural monotonicity property of maximal universal no-
blockage with respect to work rate ratios.

T

Corollary 3.1. Given an order type W°, work rates + with
7= <7 and a set of orders W with W; € H; o
for each j, any s is a no-blockage sequence for (W, 7).

maXg—g, ., K-1

The following algorithm may be applied in order to
check whether a set of orders W is a subset of some max-
imal universal no blockage set: Defining W° as the pointwise
maximum of W; of all orders j in the set W, ie., let
WO(x) = max;<j<;Wj(x) for each x € [0,1], check whether
each W; is in the set H;yo, ie, check if Wj(x) e
[FW°(x), WO(x)] for all x € [0,1] and each order j.
Proposition 3.4. The decision given by the algorithm always

identifies correctly whether a set of orders W is a subset of
some maximal universal no blockage set.

X
0.4 0.6 0.8 1.0

(b) cumulative workload

Example 3.1. We demonstrate the maximal universal no-
blockage approach with a (W,r) example including five
orders to be picked from an aisle with 12 pick faces. At a
pick face, each order either has one unit workload or
none, as depicted in Figure 4(a), with a corresponding
cumulative workload distribution function, Wj(x), depicted
in Figure 4(b). Applying the algorithm, the pointwise max-
imum of all orders in Figure 4(b) is identified as W°(x) =
max{W;3(x), Ws(x)}. Then, for 7=0.15 since Wj(x) €
[FW(x), WO(x)] for all x € [0,1] and each order j, W is a
subset of the maximal universal no-blockage set Hj o,
thus any sequence has no blockage. In contrast, for 7 =
0.5, only the orders W3, W5 are each in H; o, therefore
only these two form a subset of this maximal universal
no-blockage set.

In sum, we find that maximal universal no-blockage is
easily identified, and expands when the minimal gap
between the work rates increases, thus increasing the no-
blockage opportunities.

3.3. Steady-state hand-off positions sequencing

General orders with identical total workload allow a simple
no-blockage sequencing policy we propose based on the
steady-state hand-off position introduced in Definition 3.1.
As we will show, under identical total workload, blockage
opportunities are reduced when the orders are processed
with decreasing steady-state hand-off positions, with higher
importance placed on downstream workers. We therefore
propose the following sequencing policy.
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Definition 3.3. Let s*" be a sequence in which the orders
are sorted according to decreasing weighted average,
Zf: axy, for increasing weights 0 < oy < ... < og_y, of
steady-state hand-off positions.

The sequencing policy s*" reduces blockage opportuni-
ties, because the difference between the work accomplished
by any upstream worker and the work they would accom-
plish were they to move together with the next downstream
worker tends to decrease.

The policy guarantees no blockage under certain condi-
tions, namely a dominance relation between the steady-state
hand-off positions, together with the ability to initialize the
process, before the first cycle starts, by letting workers k =
2,..,K work up to the relevant steady-state hand-off pos-
ition of the initial K — 1 orders in the sequence s*?:

Proposition 3.5. Consider a sequencing problem (W,r)
where all orders have identical total workload denoted by a,
ie, Wj(1) = a for all j. Suppose that there exists a sequence

s* in which the orders have non-increasing steady-state hand-
off positions, i.e, x (W) > ...>xp (W) for all workers

k=1,..,K. Then the same holds for any ssshp sequence.

Furthermore, if the starting position of each worker k =

2,..,K in the first cycle is the (k-1)th component of the

steady-state hand-off position of the (K + 1 — k)th order in a

sequence s, i.e., xo (W, r,s%MP) = xi_l(WS:hpl k), then s*hP
-

has no blockage.

The condition on the sequence s* stated in Proposition
3.5 is always satsified for K = 2 workers. It ensures that for
each cycle, each worker starts at their steady-state hand-off

W(x)

d
1
'
'
' '
' '
' '
' '
1 1

A % x5 xi
(a) cumulative workload

Figure 5. Four-order example with identical total workload.

(a) K =3

Figure 6. Bl for s and piecewise linear orders with K=3, 5 workers.

position of the order they are currently processing, which
guarantees a no-blockage sequence. This holds regardless of
the shape of the cumulative workload distribution functions,
and for any work rates r.

Example 3.2. Consider a BB sequencing problem (W,r),
with r = (3, 1) for two workers and maximal work rate ratio
7 =+, and with four orders to be processed with identical
total workload a = 1. By Definition 3.1, the respective steady-
state hand-off positions are as in Figure 5(a). Then, according
to Definition 3.3 and Proposition 3.5, if the orders are
sequenced with decreasing xj(W;), ie., ssshp — (1,2,3,4),
and the starting position of worker 2 in the first cycle is
xo(W,r,s%) = x, then s*"P has no blockage. The example
demonstrates that given the process initialization, orders with
more picks at the end of the line (e.g., w; in Figure 5(b))
tend to be sequenced early, and vice versa.

We demonstrate numerically the sequencing policy s*"?,
with o =k for k=1,..,K—1, for piecewise linear order
types. These order types are motivated by order-picking as
described in the Introduction (see Figure 1). Figure 6 depicts
the average BI values of 10 randomly sampled sequencing
problems with K=3, 5 identical workers and increasing
number of orders J, where each order has total workload
equal to one and is independently drawn with a piecewise
linear cumulative workload distribution function (specific-
ally, with approximation levels L = 6, P = 24; more details
about the definition of such order types is provided in
Section 3.5). For comparison, a uniformly random sequenc-
ing policy generates higher BI values. For J = 100, the aver-
age BI value with K = 3 is 0.069 under a random sequence,

w(x)

wy wy wi

W3

(b) workload density

.......................................... + random seq.

02 ° % . gShpag=k



which reduces to 0.021 under s*", ie., 70% improvement.
Again for ] = 100, the average BI value with K =5 is 0.22
under a random sequence, which reduces to 0.084 under
s e 62% improvement.

3.4. Strong no-blockage sequencing

The no-blockage requirement of Subsection 3.2, despite being
useful, is very demanding as it requires no-blockage simultan-
eously for all possible sequences of a large set of order types.
In this subsection we propose and study a weaker require-
ment based on a simple optimization principle with respect
to the starting position of workers 2, ..., K. It is based on the
idea that the zero starting position xo(W,r,s) =0, conse-
quently the first cycle in a sequence, is a blockage worst case.

Definition 3.4. An ordered pair of orders has strong pair-
wise no-blockage given r if no blockage would occur in any
cycle of a sequence consisting only of this ordered pair for
any pair of consecutive workers working alone. A sequence
s has strong no-blockage for (W,r) if each consecutive pair
in s satisfies strong pairwise no-blockage given r.

A necessary and sufficient condition for strong no-blockage
is given by Corollary A.1 in Appendix A. Strong no-blockage is
also monotonic with respect to work rate ratios, as shown next.

Proposition 3.6. Given work rates r,7 with ri < Te for all
k+1 Tk+1

k=1,..,K—1 and a set of orders W, if a sequence s has strong
no-blockage for (W, 7) then the same holds also for (W, r).

3.4.1. First-order distributional dominance sequences
Strong no-blockage allows us to propose a sequencing policy
based on a dominance relation between order types.

Definition 3.5. For any set of orders W, we say that s is a
first-order distributional dominance sequence if Wi, (x) >
W;, (x) for each n and x € [0,1].

Since first-order distributional dominance is a relatively weak
requirement, the following proposition shows that many
sequencing problems are guaranteed to have strong no-blockage.

Proposition 3.7. For any sequencing problem (W,r) with
work rate ratio 7 < 1 for all workers k=1,..,K—1, if s is

(a) 7 = 0.15

Figure 7. Five-order strong no-blockage example; directed graphs for 7 = 0.15,0.5,0.66, 1; no-blockage sequence (2,4,1,5,3) = s™".
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a first-order distributional dominance sequence then s has
strong no-blockage for (W,r). When r = ... =rx the con-
verse also holds, i.e., if s has strong no-blockage for (W,r)
then s is a first-order distributional dominance sequence.

3.4.2. Reducing Bl using TSP and Hamiltonian paths

We now link the problem of finding a strong no-blockage
sequence for (W,r) to the problem of finding a minimum
cost TSP and Hamiltonian Paths (see e.g., Garey and
Johnson, 1979) in an appropriately defined graph. Given a
sequencing problem (W,r), consider a complete directed
graph where the set of nodes is the set of orders W, and the
cost of the arc connecting order j to order j is defined as
the BI generated by this ordered pair based on strong pair-
wise no-blockage given r, i.e., the BI of processing only this
ordered pair by the consecutive workers k, k 4+ 1 with high-
est work rate ratio 7 = max_;,  x-17x working alone. Then
the set of zero cost TSP paths in this graph, or equivalently
the Hamiltonian paths in the sub-graph containing only the
zero cost arcs, is exactly the set of strong no-blockage
sequences for (W, r). It follows by Proposition 3.6 that s is a
no-blockage sequence for (W,r) if a corresponding
Hamiltonian path exists for some 7 with rk% < % for all

k=1,..,K — 1. Furthermore, we may define the following
policy related to strong no-blockage:

Definition 3.6. Let s'™" be a sequence corresponding to a
minimum cost TSP path.

Example 3.3. Figure 7 demonstrates the TSP and
Hamiltonian paths approach for the five order (W,r) in
Example 3.1. The directed graphs (a)-(c) in the figure are
the zero-cost sub-graphs corresponding to the maximal
work rate ratios ¥ = 0.15,0.5,0.66, respectively, for K > 2
workers. As explained in Section 3.2, for 7 = 0.15, the set of
orders W is a subset of a maximal universal no-blockage set,
therefore any sequence has no blockage. Even though this
property does not hold for the higher maximal work rate
ratios 7 = 0.5,0.66, there are strong no-blockage sequences
for (W,r) that correspond to Hamiltonian paths in the
graphs shown in Figures 7(a)-(c), for example
(2,4,1,5,3). This is the unique such sequence for 7 = 0.66,

S =
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marked with red arcs in Figure 7(c). By Proposition 3.6, s is
a no-blockage sequence for all ¥ <0.66, and calculation
shows that this does not hold for any 7 > 2. The graph (d)
is the complete directed graph corresponding to the max-
imal work rate ratio 7 =1, i.e. for identical workers. The
sequence s = (2,4,1,5,3), marked with red arcs also in
Figure 7(d), is a minimum cost TSP path in this graph.
Calculation using the analysis in Appendix A shows that in
fact this is a no-blockage sequence.

3.5. Total workload and steady-state hand-off positions
combined sequencing

In this subsection we propose a sequencing policy that gen-
erates low BI when the number of orders to be sequenced is
relatively large.

Definition 3.7. Let s'* be a sequence in which groups of
identical orders are sorted lexicographically according to (i)
increasing total workload, and then (ii) decreasing weighted
average, Zf;ll axx;, for increasing weights 0 <oy < ... <
o1, of steady-state hand-off positions.

Intuitively, the increasing total workload sequencing policy s
has the advantage of no-blockage sequencing of consecutive iden-
tical orders, as explained in Section 3.1. On top of that, it leads
to higher total workload for upstream workers as compared with
downstream workers, which tends to reduce the overall physical
progress of upstream workers along the line relative to down-
stream workers. Furthermore, for different orders with identical
total workload, s leads to processing of orders with decreasing
steady-state hand-off positions, with higher weight given to
downstream workers. As shown in Section 3.3, such sequencing
reduces blockage opportunities. This holds because the difference
between the work accomplished by any upstream worker and
the work they would accomplish were they to move together
with the next downstream worker tends to decrease.

Consider a general, parametric domain of distributions,
motivated by order-picking as described in the Introduction

(see Figure 1). For a given finite ordered set X = {yp}ﬁzo with

an integer P > 2 being the number of pick faces, and where X
is the set of increasing pick face boundary positions, 0 = y, <
1<y <..<yp=1, let Wy be the set of all order types
W such that W is piecewise linear with X’ being its set of

W(x)
1.0

0.8

0.6

0.4

0.2

break points, and where W (y,) € [0,1] for 1 < p < P. When
the number of breakpoints P is large, this domain is a good
approximation for the domain of all order types normalized to
have total workload of at most one. The number of break-
points P is therefore referred to as a positional approximation
level. Each W € Wy may be represented by the vector A =
[a1,...ap] with 0 <a; <ay <..<ap<1, where W(x) =

P—&—%(x—yp) for x € [0,1) and p such that y, <x <

Yp+1, and in particular a, = W(yp) foralll1 <p <P

We concentrate on a particular subset of piecewise linear
order types, which will be then used to show that s is a good
sequencing policy. Specifically, for two integers L > 1 and Q >
2, where L is a workload approximation level and P = QL is
the positional approximation level, consider order types such that
each a, € {0, 1, 2,...,1}, and each of these values up to ap is
attained for some p. Figure 8 illustrates such order types with
yp =5 forall 1 <p <P, and for two approximation specifica-
tions alongside an approximated order type with smooth cumu-
lative workload distribution function. The number of layers, L,
along the vertical axis in the figure represents the possible posi-
tive cumulative workload values (two in the left and six in the
right), and the number of breakpoint positions, P, along the hori-
zontal axis represents the number of pick faces. Note that we
may partition any such set of order types to groups [ =
0,1,...,L, where all orders in group [ have identical total work-
load of 1

L’

—l!ufil)! , thus the total number of all order types is C = ZZL:() C.

and the number of order types in group [ is C; =

The next result shows how sequencing according to s'
reduces the blockage inefficiency for large problems.

Proposition 3.8. For any sequencing problem (W,r) with
piecewise linear W under some workload approximation level
L, positional approximation level P and slowest-to-fastest con-
figuration, using the sequencing policy s'°*, as the number of
orders ] approaches +oo, the BI approaches zero.

Finally for this subsection, we demonstrate the sequenc-
ing policy s numerically with piecewise linear orders types.
Figure 9 depicts the average BI values of 10 randomly
sampled sequencing problems with identical workers and
increasing number of orders J, where each order is inde-
pendently drawn with a piecewise linear cumulative work-
load distribution function given the approximation levels

W(x)
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0.8
0.6
0.4
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0.2 0.4

(a) L=2,P =4

Figure 8. Approximation using piecewise linear distributions.
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Figure 9. Bl for piecewise linear orders with L =6 and P =24 and K = 2,3,5
under different sequencing policies.

L=6, P=24 and K = 2,3,5 workers, such that the total
workload is first uniformly drawn and then the particular
type is uniformly drawn among all types with the already
given total workload. Using the sequencing policy s with
o =k for k=1,..,K—1 leads to decreasing BI values,
which are relatively low already for 10 orders. For compari-
son, a uniformly random sequencing policy generates sub-
stantially higher BI values.

Table 1 presents the average BI and MSI values for | =
100 for each of the sequencing policies and number of
workers depicted in Figure 9. We observe that for each
sequencing policy, as the blockage opportunities tend to
grow, the average BI value increases with the number of
workers. Additionally, for each sequencing policy, the per-
centage improvement in the average BI value compared to
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Table 1. Bl, MSI and % improvement of each policy compared to random
sequencing.

No. of workers 2 3 5
random seq. BI 0.280 0.469 0.820
Ml 0.288 0.493 0.881
§5shp, =k BI 0.146 (47.9%) 0.276 (41.2%) 0.486 (40.8%)
MSI 0.149 (48.3%) 0.284 (42.3%) 0.505 (42.8%)
stex, o=k BI 0.022 (92.1%) 0.103 (77.9%) 0.287 (65.0%)
Ml 0.031 (89.1%) 0.122 (75.3%) 0.330 (62.6%)
TP BI 0.008 (97.0%) 0.042 (91.0%) 0.101 (87.7%)
MSI 0.018 (93.6%) 0.059 (87.9%) 0.138 (84.4%)

random sequencing, as presented in the table, decreases with
the number of workers. The improvements increase when
proceeding top to bottom in the sequencing policies. The
policy s*"P%=k is clearly better than random sequencing.

lex sshp, =k
bl

The policy s is better than the policy s mainly due
to the added lexicographic criterion of the total workload.
Note that the latter two policies have polynomial complexity
as they are based on sorting principles. The policy s™" is
observed as the best, and should be used whenever the com-
putational burden is worthwhile. As shown in the table, the
BI and MSI values agree on the ranking of the policies.

4. Concluding remarks

Order heterogeneity in BB order-picking lines may potentially
reduce the throughput due to blockages. We provide methods
to quantify this inefficiency and propose practical order
sequencing policies that substantially reduce it. There are several
insights and conclusions. First, identical orders should be picked
consecutively to generate zero blockage. Second, when the order
workload is controllable, for example via batching, it is recom-
mended to create batches satisfying maximal universal no-
blockage for any sequence. Alternatively, one may generate
batches of equal total workload and apply the sequencing policy
s*hP in order to guarantee no blockage. Yet a further option is
to apply the strong no-blockage sequencing policy s™F when its
computational burden is justified. Finally, when batching is
not possible or cannot achieve the above conditions, the tract-
able sequencing policy s leads to substantial improvements.

A direction in which our approach may be generalized
and extended is to allow for robustness considerations. This
may involve accommodating varying work rates across the
process cycles. Sequencing in a stochastic environment may
be investigated as well. Other future research directions
include the investigation of order batching with or without
sequencing, and studying the sequencing problem in other
order-picking line configurations, such as pick-and-pass (De
Koster et al., 2007), cellular BB, and BB with overtaking.
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Appendix A: Preliminary analysis

In this appendix we take the first, technical steps in our analysis, provid-
ing a necessary and sufficient condition for no blockage in any cycle, as
in Definition 2.4, and for blockage in any cycle. Throughout the analysis,
for notational convenience we set x,, o(W,r,s) = 0 for any cycle n.

A useful way of understanding our BI measure of inefficiency is
through its numerator BL(W, r,s), the work capacity loss due to block-
age. First, note that, using Equation (2.1),

BL(W,1,s)
Tk

J-1
= Z = [W,, (0, k (W, 1,5)) = W, (X1, k-1 (W, 7, 9))]

K-1
n=1 k=max{1, n+K-J} (TK

W Conk (W, 8)) = W s (rac it (Wor, s))]),



which, since worker K is never blocked, may be interpreted as the sum,
over all busy cycles for workers k=1,..,K—1, of the difference
between  the  amount of  work,  E[W (x,k(W,1,5)) -
Wi, (%n—1,k-1(W, 1,5))], that can potentially be accomplished by worker
k during cycle n, and the amount of work, W, (x,x(W,1,s)) —
W, i Xn—1,k-1(W, 1,5)), actually accomplished by worker k due to
possible blockages during this cycle. In particular, for cycle n with
Xn—1,k(W,1,5) = 0 for any worker k =1,...,K—1, e.g. n =1, the sum-
mand simplifies to
:Tk( (Wi, (% k(Wi 25)) = We, (Koot k1 (Wor,5))].

Now, for any order j processed by worker k + 1 immediately fol-
lowed by order j' processed by worker k and all x € [0,1], define the
cumulative workload difference function

djr,j,k(x) = ?ij(x) - ‘/Vj/ (x)

To interpret this difference, consider some cycle n with
Xn—1,k(W,1,5) = 0 for any worker k = 1,...,K — 1, where worker k + 1
holds order j=s,11x-x and worker k holds order j = s,ix—-
Suppose first that no blockage occurs for any position of worker k + 1
within the interval I = (0,x) for some x € (0,1]. Then dy,j«(x) is the
difference between the work accomplished by worker k throughout
interval I of worker k + 1, and the work worker k would accomplish
were worker k to reach position x together with worker k + 1. In this
case, djji(x) <0, and interval I has zero contribution to the work
capacity loss due to blockage.

Formally, to study no-blockage sequences, the following lemma
is key.

Lemma A.1. Given a sequencing problem (W,r), a sequence s has
no-blockage if and only if for all cycles n=1,2,...,] — 1, worker k €
{max{1,n +K—J},...K =1} and x € [x,—1,x(W,1,5), X k11 (W, 1, 5)],

Aok osoroiok(¥) < Tk [Wsn—uk—k (-1, k(W 1,9)) = Wy, (K1, k1 (W, 7, 5))]

(A1)

Note that Lemma A.1 implies that if no blockage occurs throughout
cycle n when the starting position of the workers is x,_;(W,r,s), then
no blockage would continue to hold throughout the cycle if the starting
position of any single worker k = 2,..., K was larger. Consequently, the
zero starting position of all workers is the worst case in terms of block-
age. This implies that the first cycle in a sequence, for which we always
assume xg x(W,r,s) =0 for all k=1,..,K — 1, is in particular a block-
age worst case.

In cycle n of a no-blockage sequence s, the position of hand-off n
satisfies x,, x (W, ,s) = 1 and the recursive relation

Xnk(Worss) = max{x|W,, ., (%) = We, o, (%1, k-1 (W, 75 5))
= ?k(WSanka (xﬂ, k+1 ( W,r, S)) - W5n71+K7k (xﬂ—l,k(w> 7 S)))}

(A2)

for k=1,..,K—1. In this recursion, the max is relevant when the
equality constraint in (A2) holds over a closed interval of x values,
which happens when W, (x) is constant there because the workload
density is zero.

The following corollary to Lemma A.l1 characterizes strong no-
blockage (see Definition 3.4).

Corollary A.1. A sequence s has strong no-blockage for (W,r) if and

only if for all cycles n=12,..,]—1 and all workers
ke {max{l,n+K-J},...K—1},
012)2(1 dSrH»kaaSnflAkaxk(x) <0.

Suppose now that worker k is the most downstream worker blocked
by worker k + 1, where this blockage occurs for the entire position
interval I = (0,x) for some x € (0,1]. Then dj,j(x) is the difference
between the amount of work, 7 Wj(x), that can potentially be accom-
plished by worker k within interval I, and the amount of work, Wj (x),
actually accomplished by worker 1 due to this blockage. In this case,
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dj j(x) > 0, and is exactly the positive contribution of interval I to the
work capacity loss due to blockage.

To understand the possibility of blockages in general, we may con-
sider intervals I = (y1,2) C [Xu-1,k(W,1,8), X k1 (W, 1,5)]  for
Xp-1,k(W,1,5) > 0, where y; is a joint position for workers k,k + 1 if
one exists otherwise y; = x,1 x(W,1,s), and let yo = y; in the former
case and yo = x,—1,k—1(W,r,s) in the latter. Then, extending the func-
tion dj ji(x) to such intervals I by defining dy «(I) = dj ji(y2) —
dj k(1) no blockage occurs for any position of worker k + 1 within
the interval I if and only if dy ; «(I') < 7[W;(y1) — Wj(y0)] for all inter-
vals I' = (yp,x) with x < y,, in which case interval I has zero contribu-
tion to the work capacity loss due to blockage. Additionally, blockage
occurs throughout I if and only if yo = y; and dy,j x(I') > 0 for all sub-
intervals I' C I, in which case dy j«(I) is exactly the contribution of
the interval I to the work capacity loss due to blockage. In the latter
case, dy;k(I) is the difference between the amount of work,
7t(Wj(y2) — Wj(y1)), that can be potentially accomplished by worker 1
during interval I, and the amount of work, Wj (y,) — Wy (y1), actually
accomplished by worker 1 due to this blockage. It follows that
BL(W,r,s), the work capacity loss due to blockage and the numerator
of BI(W,r,s), is equal to the sum of dj jx(I) over all disjoint blockage
intervals in all cycles.

Formally, to study blockage sequences, the following lemma is key.

Lemma A.2. Given a sequencing problem (W,r), a sequence s and a
cycle n=1,2,...,] — 1, when worker k € {max{1l,n+K—-J},...,K—1}
is the most downstream worker blocked by worker k+ 1, this blockage
occurs at position x € (Xy—1,k(W,1,5), Xn k1 (W, 1,5)) if and only if

dsn—karsnflJrkaak(x) - d5n+K7k»5nfl+K7k:k(lk (x)) > Tk I:W37171+K7k (lk+l (x))

~Wor e (h(%))] (A3)

and
SVH»K—lnSn—H»K—k:k(x_) >0, (A4)
where Jsﬂ-K,k,sn,HK,k,k(x_) is the left derivative of d, ., s, ,..c.k(X) at x,

and either Ii(x) = l1(x) is the joint position of the two workers during
cycle n at the end of the previous blockage interval, or, in the case where
there is no such previous blockage interval, Ii(x) = xp—1,k-1(W,1,5) and
Iy1(x) = x41,k(W, 1,5) are the initial positions of worker k and worker
k + 1, respectively, at the beginning of cycle n.

Example A.1. Consider a BB sequencing problem (W,r), with iden-
tical work rates that are equal to one for two workers, ie., r=(1,1)

and 7; =2 =1, and with two piecewise linear orders (see Section 3.5)

2

to be processed, W = (Wj)j:m, with joint break points X = {% % 1}
and representing vectors A; = [}, 1,1] and A, = £, 1, Z]. Consider the
sequence s = {1,2}, thus j=1 and j =2. The following Table 2
presents the functions used in Lemma A.2 in order to characterize the
blockage obtained. Since the first cycle ends with blockage, the entire
work is completed in a single cycle. As shown in the table, several
intervals are distinguished, depending on whether Conditions (A3) or
(A4) are met, which in turn determine two blockage intervals during

the single cycle, one interval at the beginning and the other at the end

Table 2. The functions used in Lemma A.2.

interval xe (0,9 xefl? xe 23 xe€ (1)
W) x TEREE NN
o) =i g+ g
% 1) i e
h(x) = h(x) 0 1 i 1
Cond. (A3) True False False True
Cond. (A4) True False True True
Blockage True False False True
Contribution to BI + 0 0 +

1 10
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of the cycle. The contribution of each blockage interval I to BI(W,r,s)
js Bl 16 _ 1

TWW) 1+2/3

Lemma A.2 may also be used to analyze general blockage cases, in
which worker k is not the most downstream worker blocked by worker
k + 1. This is done by defining for each blocked worker k + 1 a virtual
order type with workload distribution W increased from their actually
processed order type W exactly so that this worker is no longer
blocked by the next downstream worker k + 2. Then Lemma A.2 may
be applied recursively from worker K — 1 back to worker 1 using vir-
tual order types to test whether each worker k, now potentially the
most downstream blocked worker, is actually blocked by worker k + 1.

The following result provides an exact analytic expression, in the
case of quadratic distributions and two workers, for the work capacity
loss due to blockage, thus for the BI, and for the hand-off positions for
each cycle n.

Proposition A.1. For a sequencing problem (W,r) with two workers,
quadratic W; and a sequence s, the work capacity loss due to blockage

BL(W,r,s) = Z L Ay, where A, is recursively given, together with the

(ij)jzl,z)y such that

Wl(x)—x( )wz() <1;x>,W3(x)=g,

as shown in the left graph of Figure 10.

Suppose that the chosen processing sequence for these orders is
1—2—3, ie, s=(1,2,3). Then, in the first cycle, worker 2 proc-
esses order 1 and worker 1 processes order 2, and both start at position
x=0, ie, x(W,r,s)=0. Cycle 1
Wi(1)-W1(0)

2
tion dy,1,1(x) = 71 Wi (x) — Wa(x) = x(} — x), as shown in Figure 10, is
concave and achieves its maximal value of dJ'F"; L>0at xm =1
Therefore, worker 1 has their first blockage interval I; = (0, x™*) start-
ing immediately at the beginning of the cycle and ending at position
XM with no blockage occurring from that point until the end of the
cycle, and the contribution of this blockage interval to the work cap-
acity loss BL(W,r,s) is Ay =day11(h) = dyy| —dy1,1(0) = % (the
details for this calculation are given in Proposition A.1). Worker 1 ends

has cycle time of CT; =

= 1. For this cycle, the cumulative workload difference func-

workload w, accomplzshed by worker 1 during cycle n =1,2,..,]—1, the cycle at the position x for which their cumulative workload distribu-
by the displayed A, o, tion function W(x) is equal to w;, =7 Wi(1) —dfy, = £, ie x=
(A2 = F1w,, I WG(1) = dP),  0.<d,(0) < =d; ; ,(0),dM > Fra,y
max 7
(Ams0n) = ¢ (dyj1(1) = Fro,_1, Wy (1)), (0 < dy ;1(0) < —d; (0 2 dpi > T10n-1)
” and dy ;1(1) > 0,
(0,71 (Wj(1) = @n-1))s otherwise,
) , d, 0 7
=3 ] = S+l 1= 9.1 7 o = U. 2V£=2 x5 (0.561. So this is the hand-o osition x; (W, r,s) at whic
Jorj=su, j' = sur1, &5 = dy a«@ and wo =0 W2 So th he hand-off p , hich
Additionally, the hand-off  positions  x,(W,1s) satisfy worker 2 takes order 2 from worker 1, worker 1 takes order 3 at pos-

on = Wy lx,(W,r,s)], and whenever A, > 0, the unique blockage inter-
val I, = (yn1,yn2) during cycle n satisfies Ay = dy,j,1(In) = dy,j,1(Yn2) —
dj j1(yn1) for ym satisfying dy ;1 (ym) = F1wu-1 and

dy ;1 (0)
_d;",j,l(o)
L, otherwise.

0<d 31(0) < =d ;1 (0), 7% > Frovu

Y2 =

The following example demonstrates Proposition A.1 and summa-
rizes the preliminary analysis of this section.

Example A.2. Consider a BB sequencing problem (W, r), with iden-
tical work rates that are equal to one for two workers, ie., r = (1,1)
and 7, =r/r, =1, and with three orders to be processed, W =

ition x = 0, and cycle 2 initiates. It follows that cycle 2 has cycle time of
CT, = Wa()=Wa(x1(Ws155)) _ Wa(l)—en

1) L)
workload difference function d;,1(x) =7, Wy(x) —

= %. For this cycle, the cumulative

Ws(x) = % is con-
vex with d3 5 1(1) > 710, = % and ds 5 ) (\/g) 16, therefore worker
1 has their second blockage interval I, = <\/z 1) starting from position

x= \/g ~ 0.935 and ending at position x =1 at the end of the cycle,

thus the contribution of this blockage interval to the work capacity loss

BL(W,1,5) is Ay = d351() = ds2,1(1) —ds 21 <\/§> =

follows from Proposition A.l1). Consequently, the second hand-off

& (again, this

04
o
o — d21(x)
v / o 0.4 B 08 o ¥ — d2(®
08 " %53
// Wi(x) L.
0.6
/,// — Wh(x)
0.4 5 P~ W)
5 = = o=y
0 025 ___— ose e by
02 S g -
//r s = . CT_2=9/16
P
02 0.4 0.6 038 1.0 . |

(a) cumulative workload

Figure 10. Three-order blockage example.

(b) cummulative workload difference



position is x, 1 (W, r,s) = 1, at which point both workers complete proc-

essing their respective orders. Cycle 3 therefore has cycle
time CT; = w =0.
To summarize the example, the MS for this sequence is

S, CT, =14, the total workload of the three orders is TW(W) =
Zizl Wj(1) =2, and the makespan work capacity is MC(W,r,s) =
(%—i—%)(l +1)+0-1= 2%, therefore the work capacity loss due to
blockage is BL(W,r,s) = MC(W,r,s) — TW(W) = {. Note that the two
blockage intervals I, I, contribute equally to BL(W,r,s). Finally, the
blockage inefficiency for this sequence is BI = &

Appendix B: Proofs

Proof of Proposition 2.1. Using Definitions 2.2 and 2.3, for any
sequencing problem (W, r) and any sequence s,

() = MEOWn) Tt (Ssgreions)
TW(W) TW(W)
J_ CT, (W, r,s)Zlerk .
= TW(W)
(B1)
= M— 1 = MSI(W,1,s).

K
W(W)/> ik
Denote by sP' the sequence that minimizes the BI and by sMS the
sequence that minimizes the MS (and the MSI). Therefore,

0 < MSI(W, r, sMS)
< MSI(W, 1, sMS) —
= min; MSI(W, 1,5)

— BI(W, r,s™MS)
BI(W, 1, s%")
— ming BI(W, 1,5)

J BI Z: {1 +K—/)r"
_ CT(W, 7, $B1) Semastiancon ™

< ( S CT,(W,1,s%) B 1) B et
— K K
WW)/> ko TW(W)/2 17
E:in}—“
Zi::max{l,karz}CTn(W) 7, SBI) 1 — S K,k/
k=1
= K
W)/ 3k
Ei,—max{l ki2) Wepr (1) =Wt (%1, k-1 (W5 7y s1)) 1 Z::;+K7/Yk
a ’ T Zk:lrk

W(W)/S e
J W (1) K
< Zn:max{l,lfKJrZ} i ( r_k

) W (1)
z =
W( W) /Zk:lrk k=1 K n=max{1,J-K+2}

TW(W)

max; <j<7 Wj(1)
TW(wW) °~

where the first inequality is inequality (B1) for s = sMS, and the second
and third inequalities follow from the definitions of sMS Bl and
Definition 2.3 since BI(W,r,sB!) < BI(W,r,sM%) and MS(W,r,sMS) <
MS(W, r,sP1), respectively. The two subsequent equalities follow since
the first max{0,] — K + 1} terms of each of the two sums over cycles n
in the fourth line in this chain of inequalities are identical, and from
Equation (2.1), respectively. The fourth inequality follows by omitting
the two negative terms, and the last inequality follows by replacing each
total workload by the maximal total workload over all orders in the
sequence. Finally, when fixing a positive lower and upper bound on each
order’s total workload, the last expression in this chain approaches
zero as the number of orders increases. Therefore, the difference
mingMSI(W, r,s) — min,BI(W, r,s) approaches zero since it is non-nega-
tive and has an upper bound that approaches zero. It follows that when
the number of orders is large, any sequence that minimizes the BI over
all sequences approximately achieves the minimum MSI over all

< (i:k

k=1 'K

)min{],K— 1}
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sequences. Moreover, since the total workload TW(W) and the work
rates r are independent of the sequence of orders, any such sequence also
approximately achieves the minimum MS over all sequences. |

Proof of Pro osition 2.2. since

CT,(W,r,s) <

By Equation (2.1),
Yl for any cycle n, Equation (2.3) implies

’
Zr" Zk 1k

MC(W,1,5) < Z w(w),

n=

K-1
thus BI(W,1,s) < % To see that this bound is tight, consider the
K-order sequencing problem where W;(x) has W1(1) > 0 and Wj(x) =

0 for j=2,...,J and x € [0,1] and the chosen processing sequence is

1—-2—..—K, ie.s=(1,2,...,]). Then, in the first cycle worker K
Wi()-0 _ wi(1)
K K
ers 1,..,K —1 process orders 2,...,], respectively, and, being blocked

throughout the cycle, end at x;(W,r,s) = 1. All the remaining cycles

processes order 1 and determines CT;(W,r,s) = , work-

n=2,..,J] have CT,(W,r,s) = =% = 0. Therefore,
+0 T
—1"k k=1
BI(W,r,s5) = —%& -1= .
W](l) + 0 157¢

Proof of Lemma A.l. Consider any cycle n=1,2,..,]—1 and
worker k € {max{l,n+K-J},..,K—1}, and let j=s,_;.x— and
j =spik-k. Condition (Al) is equivalent to 7x[W;(x)—
Wi(xp1,k(W,1,5))] < Wy (x) = Wy (%p-1,k-1(W,1,5)), which means that
if  workers kk+1 were  to reach  position  x €
[%n-1,k(W, 1, 8), Xy k11 (W, 7,5)] from their respective starting positions,
namely x,_1 1 (W,r,s)) for worker k and x,_1x(W,r,s) for worker
k+ 1, the amount of work, 7x[W;(x) — Wj(xu—1,k(W,1,5))], that could
be potentially accomplished by worker k is at most the required
amount of work, Wy (x) — Wy (x,—1,k-1(W,1,s)), ie., worker k is not
blocked by worker k + 1 up to position x. Since this holds for all x €
[Xn-1,k(W, 1, 8), Xy k11 (W, 7,5)], no blockage occurs throughout the
cycle. |

Proof of Lemma A.2. Let j=s,;x_k and j = s, x_k. Condition
(A3) is equivalent to 7r(Wj(x) — Wi(L(x))) > Wy(x) — Wy (Li(x)),
which means that while the workers are moving to position x €
(%n=1,k(W,1,5), % k41(W, 1,5)) from their respective starting positions,
Ik(x) for worker k, the amount of work, 7x(Wj(x) — W;(L(x))), that
can be potentially accomplished by worker k is larger than the required
amount of work, Wj (x) — Wj(l;(x)). This is necessary for blockage to
occur at position x, as otherwise worker k will not be able to reach the
position of worker k + 1. Adding Condition (A4), both conditions are
together sufficient for blockage at position x because Condition (A4)
means that this positive work difference is increasing also at position x.
Note that even if Condition (A3) holds, violation of Condition (A4)
implies that blockage does not occur at x. This is the case because
Condition (A3) implies that the two workers are positioned at x simul-
taneously, but violation of Condition (A4) implies that such blockage
will no longer hold when the two workers infinitesimally proceed with
their work. This shows that the two conditions are together necessary
and sufficient for blockage to hold at position x. |

Proof of Proposition 3.1. Consider any sequence s. Since for
each cycle n=1,2,..,]— 1, worker k € {max{l,n+K-J},..,K—1
and j = sy-1+k-k and j' = sy k—k>

max dy ; k(x) = max (7’ij(95) - Wy (x))

0<x<1 0<x<1
< A - W =
< max (W(x) - W(x))

< T W (xnm1, k(W 1, 8) = W (xpe1, k1 (W, 1, 5))),

the conclusion follows from Lemma A.1. |
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Proof of Proposition 3.2. Define the function f:

0. W — 0. W by i) =0, fely) = W(1) and fily) =
Vo1 + 1 [W(1) = yki] for all k=1,..,K—1 and all y. By Equation
(A2), the function f maps the cumulative workloads at hand-off n —1
to the cumulative workloads at hand-off n, ie., (Wlx,x(W,1,5)],k =
0,...K) = f(Wxy—1,k(W,1,5)],k =0,...,K). Note that for 7, <1 for

allk=1,..,K—1, f(y) is a contraction mapping because

K-1
ICARIRIEDY

k=1

K=2
<>
k=1

Tk
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<> il
k=1
=P =y
Applying a fixed-point theorem, the hand-off position x,(W,r,s)
converges to the steady-state hand-off position x*(W) as the number

of orders J approaches infinity, and the convergence rate is exponential.
|

Proof of Proposition 3.3. Fix a sequence s. To see (a), note that
for any pair of orders processed in cycle n with order types Wj, W; €
H; wo for j=s,_11k—k processed by worker k€ {max{l,n+ K —
J},...K—1} and j = 5,11 by worker k+ 1,

MAXy (W, ry o)< (W 1) B,k (%)
= MAXy | (W, )<<, (W) (TKWj(X) = Wy ()
< MAXy, (W, ) <xsr i (W) (FWO(x) = TWO(x))
=0 < 7 [Wi(xuo1 k(W,1,5)) = W, (o k1 (W73 9))]

which implies by Lemma A.1 that no blockage occurs during cycle n.

To see (b), first note that for any order type 174 & Hy wo, there
exists 0 < x’ < 1 such that either (i) W(x') > W°(x’), or (i) W(x') <
FWO(x'). In case (i), considering W = (W, 7x_; W°) with j = s, = 1 for
worker k =K —1and j/ = s, = 2 for worker K,

maXp<x<1i dj/,j,k(x) > djr,j,k(xl) = ?kW(x’) - ?kWO(Jd) > ?kWO(x’)
W) =0,

thus, since xox(W,r,s) =0 for all k=0,..,K—1, by Lemma A.l,
there is blockage during the first cycle. In case (ii), denoting by k
the most downstream worker for which 7y =7, and considering
W= (W°,...(K -k times)..., WO, W) with j=s,xr=1+K—k for
worker k and j' = sy x—k = 2 + K — k for worker k + 1,

maXo<x<1 djf,j,k(x) 2 djf,j‘k(x/) = ?kWO(X/) - W(ﬁd) > ?WO(X')
—FWO() =0,

thus again, by Lemma A.1, there is blockage during the first cycle. H

Proof of Proposition 3.4. The direction that if the algorithm con-
cludes the answer yes then it is in fact yes follows directly from
Proposition 3.3. For the other direction, suppose that the algorithm
concludes the answer no, i.e., there exists an order Wj in the set W
and position x’ € [0,1] such that W (x') < 7W°(x’). Let j be an order
in W such that W;(x') = W°(x’), denote by k the most downstream
worker for which 7, =7, and consider a sequence s in which the first
K —k+ 1 orders are (Wj,...(K — k times)..., W;, Wy ). Then

maXo<x<i djf}j’k(x) 2 djf’j)k(xl) = 7’W,(Xl) bl W]/(X’) > ?WO(X,)
SFWO(W) =0,

thus, by Lemma A.1, there is blockage during the first cycle. By
Definition 3.2, W cannot in fact be a subset of some maximal universal

no-blockage set because this would imply that any sequence s is a no-
blockage sequence for (W, r). This proves the other direction. |

Proof of Proposition 3.5. By definition, a sequence P jg sorted
decreasingly by Zf;ll oxx; for some ox_; >..>oy >0. Since
G(We) > o> x;:(Ws]«) for all workers k=1,....,K, xf(Wam) > ... >
x;;(wssshp) for all workers k = 1,...,K. In fact, s* is a s selquence for
all agly > ...>a; > 0. Note that all cycles n=1,2,...,] — 1 have the

same cycle time of

E:’;llr"’
a—ad—x—
. >um__a
Zlf:l Tk

At any such cycle n, each worker k = 2,...,K starts at the (k-1)th

CTn _ a— Wsilshp (x}}_l (WS.:’shp ))

K K

component of the .steady—state hand-off position of order sf,;lf; o
xi_l(w‘;&‘;%) for which

k-1

w=1"k

Wy (%1 (W =a ,
Bl (W ) =0
processes this order, and ends at the kth component of the steady-state
hand-off position of this order, x; (W ) for which

K+n—k

k
17
(W ) = a%
D kiTk

SK4n-k
The fact that the orders are with decreasing x;(W;) for all workers
k=1,..,K—1 indeed ensures that no blockage occurs in any cycle. B

Wy

K+n—k

Proof of Proposition 3.6. This follows by Corollary A.1 since for
every cycle n=1,...,] — 1, all workers k € {max{l,n+K—]J},...,K—
1}, and all x and j = s,_11k—« and j' = s,;x—k» dj jx(x) is increasing
in the work rate ratio 7y, so if the ordered pair W; followed by W} has
strong pairwise no-blockage given some 7, then this will hold also for
any smaller 7. |

Proof of Proposition 3.7. Suppose that s is a first-order distribu-
tional dominance sequence. Since for each cycle n=1,2,..,] -1, all
workers k € {max{l,n+K-J},..,K—1}, and j=s,_11k—x and
j/ = Sn+K—k>

maXo<x<1 dy,j,k(X) = MaXp<x<1 (?k W;(x) — Wy (x))
< maxp<x<1 (V\/](x) - W/(x)) <0,

the conclusion follows from Corollary A.1. That the converse holds
when r; = ... = rg follows from Definition 3.5. | ]

Proof of Proposition 3.8. Fix L, P and a sequencing problem
(W, r) with piecewise linear W under L, P. Let C be the total number
of order types given L, P, and recall that each order type has total
workload of at most one. Any sequence s'* consists of at most C sub-
sequences of consecutive identical orders. By Proposition 3.7, slince
ex

7r <1 for k=1,..,K—1, the number of blockage cycles under s is
at most C. Each such cycle n contributes to BL(W, 7, ') at most

| K-1 Wslex(l) K-1 K-1 e
CTW(W,r,se")Zrkg n Zrk§2—7l<—l.
k=1 ® 4 =1 K

Therefore BI(W,r,s) < {i=l, of which the right-hand side
approaches zero as ] approaches +oco since its numerator does not

depend on ] and its denominator approaches +oo. |

Proof of Proposition A.l.

Consider K =2 workers and cycle n, and denote j=s, and j =
snt1. By Lemma A.2, blockage occurs during cycle n if and only if
there exists x € (x,-1(W,7,5),1) such that dy;(x) > 7, Wj(x,1 (W, 1,5))
and d);(x) > 0. For quadratic orders, the cumulative workload differ-

/i
ence fJunction dyj(x) is the quadratic function



x(r1by = by + (71(a; = by) = (a7 — by))x).

Therefore blockage occurs during cycle # if and only if one of the
following two cases holds: (i) [0<a{j,)j(0) <—a§',,j(0) and di¥ >
F1Wj (%01 (W, 1,5))], or (i) [not (i) and dyj(1) > 71 Wj(x,—1(W,1,5))].
In both cases there is a unique blockage interval [x,X] satisfying

&, (0 N
dy j(X) = 71 Wj(x4—1 (W, 1,5)), and % = % < 1in case (i) and x =1
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in case (ii). Therefore the hand-off position of cycle n is x,(W,r,s) =1
in case (ii), and is determined in case (i) from the no-blockage interval
[X,1] such that Wj(x,(W,r,s)) — Wy(x) =71 (W;(1) — Wj(X)). The
contribution of cycle n to BL(W,r,s) is A, =dy j(x) —dj j(%), thus
substitution of X,X for the various cases establishes the corresponding
expressions as given in the proposition. A similar substitution also
establishes the expressions for w,, the workload accomplished by
worker 1 during cycle n. |
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