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Abstract

Farsighted decision makers, who anticipate that their deviations from a given course
of action may lead to deviations by others, act differently from myopic decision makers.
In this paper we propose a new farsighted approach to strategic interactions settings,
referred to as the Subgame Perfect Consistent Set (SPCS), based on consistency in the
spirit of the von Neumann Morgenstern solution and on subgame perfect equilibrium.
Rather than follow constructs such as indirect dominance, farsighted players according
to the SPCS adopt best responses, and unlike expectation function-based farsighted so-
lution concepts, the SPCS incorporates explicitly inherent uncertainties in the abstract
game model. We show the SPCS exists for any finite game. Surprisingly, the SPCS is
shown to always lead to Pareto efficiency in farsighted normal form games. This result
is demonstrated in various oligopolistic settings, and is shown to imply, for example,
that players who follow the SPCS reasoning are always able to share the monopolistic
profit in farsighted settings based on Bertrand and Cournot competition, and are al-
ways able to achieve coordination and Pareto efficiency in decentralized supply chain
contracting and network formation, even when they cannot form coalitions.

Key Words: Dynamic games, normal form games, abstract games, farsighted stability,

vNM consistency, oligopolistic competition

1 Introduction

The introduction of farsighted game theoretic solution concepts was motivated by criticism

of ‘myopia’ raised against both cooperative and noncooperative approaches (Chamberlin
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1933, Harsanyi 1974, Chwe 1994). In strategic settings, it is arguably better for decision
makers to conduct their actions based on farsighted considerations, and to learn how to be
farsighted. As compared to ‘myopic’ players who follow the vNM solution, core, or Nash
equilibrium, farsighted players recognize that their own moves may induce multiple moves
by other players. Motivated by the shortcoming of myopic reasoning, a variety of farsighted
solutions were proposed, starting with Harsanyi (1974). He pioneered the approach that
coalitional behavior should be analyzed using subgame perfect equilibrium strategies of an
extensive form game, with the aim of providing a non-cooperative foundation to the vNM
solution in cooperative game theory.

In view of the ‘myopia’ of the vNM solution, Harsanyi (1974) has further suggested the
need to replace therein direct dominance with indirect dominance. Indeed, in the Largest
Consistent set (LCS) introduced by Chwe (1994) for abstract games, farsightedness is em-
bodied by indirect dominance.! Chwe (1994) proved that the LCS exists, and that the vINM
solution for abstract games, wherein the direct dominance relation is replaced by indirect
dominance and referred to as vNM farsighted stable set (vNM FSS), is contained in the LCS.
The vINM F'SS is criticized for assuming optimism on the part of the moving coalition. On the
other hand, the LCS is criticized for assuming pessimism on the part of a potentially moving
coalition (Ray and Vohra 2015a), and that, as a result, it could be too inclusive and may
contain non-intuitive outcomes. Its conservative criterion for a move is somewhat mollified
in the Largest Cautious Consistent Set (LCCS) introduced by Mauleon and Vannetelbosch
(M&V, 2004).

The farsighted approach for coalitional games, derived from the classical vNM solution
wherein indirect dominance replaces direct dominance, is referred to as the Harsanyi set. It
was refined to address issues such as lack of “coalitional sovereignty” (Ray and Vohra 2015b),
and lack of maximality in the sense of choosing better rather than best moves (Ray and Vohra
2015a, 2019). The latter has led more recently to the development of more satisfactory, due
to their maximality property, farsighted solution concepts for abstract games, by relying on
Rational Expectations (RE) in the sense of commonly held, endogenously determined beliefs
about the continuation path following any coalition move, see, Dutta and Vohra (D&V,
2017), Dutta and Vartiainen (D&V, 2020), Kimya (2020) and Karos and Robles (K&R,
2021). These solution concepts also satisfy variants of internal and external stability in the
spirit of those embodied in the vINM solution.

The RE approach relies on a deterministic expectation function. As such, it identifies,
with certainty, the moving coalition, if any, at each state and the resulting new state. Any

moving coalition knows with certainty the final outcome it would reach following its move

'For a definition of an abstract game and indirect dominance see Sections 2 and 4, respectively.



or stay at the current state. Thus, the RE approach does not incorporate inherent uncer-
tainties in the corresponding abstract game model. Indeed, in some sense, the underlying
abstract game in this approach differs from Chwe’s original abstract game model, wherein,
for example, it is implicitly assumed that the identity of the moving coalition at each state
is generated by some unspecified and uncertain mechanism. In fact, we note that while the
LCS, LCCS, or vNM FSS are criticized for employing non-optimal criteria for moves, we
demonstrate in this paper that the failure of the RE approach to incorporate the inherent
uncertainty as to the identity of the moving coalition may also lead to the prescription of
non-optimal moves. For example, the RE approach allows that coalitions stay at a state
z, even though the inherent uncerainty following a move therefrom would generate a set of
final outcomes, each of which being at least as good as the outcome at state z, and some
of which strictly better for all members of the moving coalition. Or the RE approach may
suggest moves by coalitions from a state z, when the inherent uncertainty following that
move generates a set of final outcomes, each of which being at most as good as the outcome
at z, and some of which strictly worse for all members of the moving coalition.

Relatedly, a necessary implication of the RE approach is what we call the confidence
assumption: only states predicted with certainty by the expectation function are considered
by potentially moving coalitions from an initial state. This may be viewed as not fully
incorporating the spirit of vINM stability, as both internal and external stability of the vINM
solution, when testing an outcome with respect to a given stable set, do not exclude from
consideration any outcome in the stable set.? One would therefore like to see all farsightedly
stable outcomes being expected by potentially moving coalitions from an initial state.

In this paper we introduce a new farsighted solution concept for abstract games, referred
to as the Subgame Perfect Consistent Set (SPCS). It differs from existing solution concepts in
the following three respects, each of which contributing to the extension of farsighted stability
beyond the confidence assumption. First, the SPCS incorporates the inherent uncertainty
in the abstract game model as to the identity of the moving coalition by explicitly allowing
for multiple coaltions affecting a move whenever possible. Second, players or coalitions
look arbitrarily far ahead when they consider the consequences of moving or staying at
the current state. From a given initial state, we model the (non-stationary) evolution of
play resulting from players or coalitions’” moves as an extensive form game, infinite in size.
Accordingly, the SPCS uses the reasoning of subgame perfection, which endows players

with unlimited farsightedness, instead of constrained farsighted constructs such as indirect

2Indeed, as noted by Dutta and Vohra (2017), their internal stability is weaker than the ordinary vNM
internal stability since it requires internal stability only with respect to those farsighted objections that are
consistent with the common expectation function. For the same reason, their external stability is stronger
than the ordinary vINM external stability.
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Figure 1.1: Transition tree in Example 1.1

dominance which could lead to non-optimal moves. Third and finally, we define the SPCS
to consist of all states which can be supported as stable by a subgame perfect equilibrium,
refined to additionally satisfy both internal and external consistency in the spirit of the vNM
solution, whereby all stable states that are reachable by some continuation subgame perfect
equilibrium are expected by potentially moving coalitions from an initial state. Importantly,
the consideration of all reachable stable states, and not only a unique stable state reachable
via indirect domination or the unique outcome determined with certainty either in the RE
approach or Kimya’s coalitional behavior, is intended to extend the reasoning beyond the
confidence assumption.

To motivate our solution concept, we consider a modification of Example 2 (Figure 3) in
D&V (2017). Though formal definitions of the various farsighted solution concepts will be
given only in Sections 2 and 4, the example is simple enough to explain the motivation for
the introduction of the SPCS in view of some shortcomings of existing farsighted solution

concepts.

Example 1.1 Consider the four player abstract game associated with Figure 1.1 that has
five states with possible transitions between states as illustrated in the figure. Specifically, the
set of players is N = {1,2,3,4}, the set of states is Z = {A,B,C,D,E}, the utility for each
of the four players is displayed in the figure next to each state, and the effective coalitions
that can move between states are depicted with arrows. Thus, for example coalition {1} is
the only coalition that can affect a move from State A, and such a move leads to State C.
The aim is to identify the set of stable states, that is, the set of states from which farsighted
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players will not move. Clearly, both states D and E, which are terminal states and movement
therefrom is impossible, are stable. The identity of the player, either 3 or 4, that gets the
opportunity to be the first to move from State C is not specified in an abstract game. Despite
such uncertainty, farsighted reasoning naturally suggests that both Players 1 and 2 strictly
prefer to move from their States A and B, respectively. Indeed, Player 4 strictly prefers to
move from State C to States E, wherein Player 4 is strictly better off than at either State
C or State D. Given the opportunity to move first at State C, Player 3 strictly prefers to
move therefrom to State D in order to preempt such a move by Player 4 from State C to
State E, wherein Player 3 would be strictly worse off than at D. Since both Players 3 and 4
strictly prefer to move from State C, the moves by Players 1 and 2 would yield for both of
them some non-deterministic prospect of utilities 1,3, which both of them strictly prefer to
the utility, 1, they have, for sure, at States A and B.

According to the SPCS, as will be further elaborated in Section 2, States D,E are reachable
from State C, namely there is a subgame perfect equilibrium in which D,E are final states
when the initial state is C. Consistency requires that all reachable and stable states are final
states following a move from either A or B. This, in turn, together with subgame perfection,
implies that Players 1 and 2 will move from States A and B, respectively. Thus, according to
the SPCS, which extends farsighted stability beyond the confidence assumption, States A,B
and C are not stable, and the SPCS in the above example consists only of the terminal states,
i.e., {D,E}.

By contrast, in Section 4 we show that LCS = LCCS = vNM FSS = {B,D,E}, whereas the
RE solutions (including Kimya 2020) predict also the sets {A,D,E} and {D,E}. We conclude
that only the SPCS prescribes/predicts optimal moves for Players 1 and 2. Farsighted play-
ers according to the SPCS would move from States A and B and realize a non-deterministic
prospect of utilities 1,3, which is preferable to staying at States A and B according to which
they will attain for certainty a utility of 1. As is clarified in Section 4, the RE based solu-
tions fail because they subscribe to the confidence assumption. They rely on a deterministic
expectation function (or the similar concept of coalitional behavior), which identifies, with

certainty, the moving coalition, if any, at each state and the resulting new state.

The SPCS shares with some existing expectation function farsighted solution concepts
the use of vNM type of consistency. But differently, it does not identify a unique moving
coalition, if any, at each state and the resulting new state. Rather, it relies on a strategy
profile to ensure commonly held beliefs, endogenously determined, about the probabilities
with which coalitions are selected to affect a change, if any, at each stage, and about the
continuation paths following coalition moves. The SPCS could be history-dependent, and

since the players are guided by subgame perfection, coalitions are employing best response
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moves, thus satisfy maximality. As in the case with other static farsighted solution concepts,
the SPCS is a natural solution concept in settings in which actions are public, transient
states have no payoff consequences, and payoffs are realized only when players reach a final
agreement.

We investigate the SPCS under two different assumptions on the endogenously determined
protocol, which, as part of the subgame perfect equilibrium, following any history generates
the coalition that can affect a move from the current state. Under one assumption, the
protocol always has full support, thus any of the coalitions that can affect a move from
the current state are generated with positive probability by the equilibrium protocol, and
maintain the notation of SPCS to denote the corresponding farsighted solution concept.
Under the other assumption, called regular protocol, at least one coalition, if one exists,
that can affect a move from the current state is generated with positive probability by the
equilibrium protocol, and denote the corresponding solution concept as SPCS*. We prove
existence of SPCS” for any finite game. In the sequel, unless explicitly stated otherwise, any
reference to SPCS is implicitly also a reference to SPCS".

We analyze and characterize our solution concept for the general case when coalition
moves are possible. However, we are particularly interested to study situations in which
only moves by individual players are allowed. This would correspond, e.g., to farsighted
settings based on Cournot and Bertrand competition, where players are not allowed to
collude or coordinate their actions. Indeed, we study the structure of the SPCS for the class
of farsighted normal form games (possibly with a continuum set of states). In particular,
we show that even when only single players can move, quite surprisingly, farsighted players
who follow the reasoning of the SPCS (and SPCS") would always be able to achieve (weak)
Pareto efficiency in any normal form game having a pure Nash equilibrium. Thus, the SPCS
reasoning leads to efficiency in “farsighted” versions of, e.g., Bertrand games, Cournot games,
some instances of decentralized supply chains coordination problems, network formation, and
the Prisoner’s Dilemma. For all these settings, a SPCS is a singleton set consisting of a unique
Pareto efficient outcome (up to equivalence to all players) weakly dominating a myopic (pure
Nash) equilibrium outcome, which would be realized if the players are myopic. Such a Pareto
efficient outcome is achieved using strategies similar to ‘grim-trigger’ strategies commonly
used in folk theorems within the repeated games literature. An important contribution
of our approach is that, contrary to many cooperative game models which assume Pareto
efficiency from the start, we derive such efficiency within a noncooperative framework. This
is undertaken using strategies that could be thought of as modelling tacit negotiation.

Our results on the SPCS (SPCS’), which was introduced to model farsighted behavior

in abstract games and was surprisingly found to lead to Pareto efficiency in normal form



games having a Nash equilibrium, are indeed somewhat related to the vast literature on
repeated games, wherein conditions are provided that possibly induce cooperation in non-
cooperative settings. That is, like in repeated games, where playing repeatedly the same
non-cooperative game may lead to cooperation and efficiency, our results reveal that players
who follow the logic of the SPCS would cooperate in farsighted versions of normal form
games having a pure Nash equilibrium. However, we note that while ‘grim-trigger’ strategies
in repeated games may lead to cooperation, there are also equilibria in which the players
may fail to do so. For example, in a repeated games setting of the Prisoners’ Dilemma,
repeated defection at each stage may also be an equilibrium behavior by the two players.
By contrast, as mentioned above, in the farsighted version of the Prisoners’ Dilemma with
individual moves, the SPCS consists uniquely of the strategy profile corresponding to the
socially optimal outcome. Consequently, contrary to repeated games in which efficiency is
achieved as a possibility, the SPCS achieves efficiency as a necessary implication.

We further show that the SPCS reasoning leads to efficiency also for normal form games
having no myopic equilibrium, given that one is willing to accept as possible an undesirable
outcome of the game corresponding to a ‘swinging’ behavior in which some of the players
keep on moving between states. We show that all the above results continue to hold when
coalition moves are permitted, where in this case a myopic equilibrium is a state from which
no coalition strictly prefers a single move.

In some sense, our approach for farsightedness in abstract games is related to that of
Herings et al. (2004), who associate with a finite abstract game a non-cooperative finite
horizon multistage game with observed actions, and apply extensive-form rationalizability in
the sense of Pearce (1984) on this game in order to define their solution concept, consisting
of the socially realizable outcomes. They show that their solution concept is not empty and
that it satisfies a certain coalitional rationality property.

In the above approaches for farsightedness the players only care about the final outcome
the negotiations lead to, and are referred to in the literature as static. In the dynamic
approach to farsightedness, see, e.g., Konishi and Ray (2003) and Ray and Vohra (2015a),
with their equilibrium process of coalition formation (EPCF) concept of solution, players
get discounted state-dependent payoffs at each state. In Kimya’s (2020) study of extended
coalition games, the utilities of players are defined over the paths of play, which allows his
model to accommodate both the static and dynamic approaches.

Finally, we note that farsighted solution concepts and various refinements and modifi-
cations thereof, were applied in a variety of settings. For example, they were employed in

studies on coalition formation (e.g., M&V 2004, Granot and Yin 2008, Nagarajan and Sosic



2007, Herings et al. 2010), efficiency in some classes of normal form games® (e.g., Suzuki
and Muto 2005, Kawasaki 2015, and Bloch and van den Nouweland 2021), network stability
(e.g., Page et al. 2005, Dutta et al. 2005, Herings et al. 2009, Page and Wooders 2009,
Kimya 2020, and Luo et al. 2021), patent licensing negotiation (Hirai et al. 2019), hedonic
games (Diamantoudi and Xue 2003, 2007), matching (Mauleon et al. 2011) and formation
of alliances (Cai and Kimya 2023). Not surprisingly, farsighted reasoning could yield quite
different insights than those derived from myopic considerations. For example, in coalition
formation studies (e.g., M&V 2004, and Granot and Yin 2008), it is shown that under certain
conditions, farsighted players would adhere to the grand coalition to the benefit of all players.
By contrast, myopic players would defect and form the stand-alone coalition structure, to
the detriment of all players.

The plan of this paper is as follows. In Section 2 we introduce the farsighted game,
formally define the SPCS and the SPCS” farsighted solution concepts, investigate some of
their basic properties, and prove the existence of the SPCS™ for any finite game. In Section
3 we introduce farsighted normal form games, derived from standard one-shot normal form
games by allowing players, or coalitions, to publicly and repeatedly, in their turn, change
their previous actions. For this class of games, we prove that any set of outcomes weakly
dominating a myopic equilibrium is a SPCS (and SPCS") if, and only if, it consists of a
single Pareto efficient outcome (up to equivalence to all players). The analysis is extended
to farsighted normal form games without a myopic equilibrium. We illustrate in Section
3 the significance of our findings by demonstrating, for example, that by contrast with
existing farsighted solutions such as the LCS and the LCCS, but similarly, e.g., to the
vINM FSS, farsighted players who follow the SPCS reasoning are always able to share the
monopolistic profit in farsighted settings based on Bertrand and Cournot competition. We
further show that farsighted players who follow the SPCS reasoning are always able to achieve
full coordination and Pareto efficiency in decentralized supply chain contracting even when
they cannot form coalitions. Finally, we model a network formation process as a farsighted
normal form game involving only individual players, and use the SPCS to generalize existing
results which mollify the tension between stability and efficiency in network formation. In
Section 4 we briefly survey related farsighted solution concepts in the literature and compare
them, including examples, to the SPCS. Section 5 provides concluding remarks. All proofs

are collected in an appendix.

3See further Section 3.1.



2 Model and Solution: The Subgame Perfect Consis-
tent Set

Consider a dynamic game in which players can act repeatedly and publicly by moving be-
tween states they care about. For example, one may think of a group of firms engaged in
contract negotiation, in which a state is a vector of contract parameters set by the firms, and
each firm is responsible for a different part of the vector. Players only care about the final
state reached, either in an actual negotiation (e.g., Hirai et al., 2019) or in a tacit negotiation
(e.g., Suzuki and Muto, 2006), irrespective of the sequence of actions that lead to it. Thus
actions have no significant costs, and the time frame in which they are taken is short with
no relevant discounting of the final state utility. Despite the dynamic nature of the game, it
can be thought of as a one period interaction between the players.

In this section we formally study such a dynamic game for the purpose of introducing
and analyzing our farsighted solution concept, the SPCS. We first present in Section 2.1 our
Farsighted Game model, and subsequently, subgame perfect equilibrium in Section 2.2, the
SPCS approach in Section 2.3, and some initial analysis in Section 2.4 via an example and

several general results, including existence.

2.1 Farsighted Game

The setting can be described as an abstract game (Chwe 1994, see also Greenberg 1990),
denoted by (N, Z, (u;)ien, (—s)scn), where: N is a non-empty, finite set of players; Z is
a non-empty, measurable set of states; the utility function u; : Z — R for each 1 € N
determines player i’s utility from a state z € Z (when it is a final state); and the binary
relation —gC Z x Z for each S C N describes the players ability to change the current state,
where z! —g 22 for 2!, 22 € Z means that coalition S of players can alter the current state
2! by moving to a new state 2% (with the empty coalition always having null effectiveness,
ie. —p= 0). A state z € Z is said to be terminal if there is no 2’ € Z, 2/ # z, and
S C N, such that z —g 2. For example, in the contract negotiation setting, Z can be
the set of all contract parameter vectors possibly set by the firms, and the effectiveness of
a singleton coalition S = {i}, consisting of a single player i, allows the player to alter the
current state by changing their own contract part without changing the parameters set by
the other players. Furthermore, in this example, the effectiveness of a coalition consisting of
two or more players can describe agreements between members of the coalition that allow
particular simultaneous changes in the parameters set by all members of the coalition (again

without changing the parameters set by players outside the coalition).



As mentioned above, we envision an extensive form game with perfect information, in
which all actions are public, which we call the Farsighted Game (FG). The complete descrip-
tion of the game is given by the following sequence of events. First, an initial state in 7 is
publicly chosen by a dummy player ¢, referred to as nature, who is assumed to be indifferent
between all states in Z. Then, an infinite sequence of stages initiates, each stage consisting
of the following two steps: (Step 1) some coalition is publicly selected by nature; and (Step
2) the selected coalition can publicly keep the current state unchanged or move to a new
state in Z according to its effectiveness. The assumption that nature selects the initial state
is taken only to reflect the fact that none of the players in N can affect this choice — one
could alternatively define the game with a prespecified initial state instead of selection by
nature. Note that in a setting where players can repeatedly observe the actions made by oth-
ers and adjust their own actions accordingly, full farsightedness may necessitate unbounded
play: actions are made taking into account the fact that any move by a coalition may be
counteracted with a further move by another coalition, without limit. Such an approach is
in the spirit of modelling farsighted negotiation. It is natural therefore that players only care
about the final outcome of the negotiation process, with no intermediate payoffs.

Formally, for the extended set of players N. = N U {c}, define the set H of all possible
histories in the game as the set of all possibly infinite sequences h = (hk)kK:’LO, including the
empty sequence when Kj; = —1, such that hq is some initial state in Z, for all odd numbers
k > 1, hy is some coalition S C N, and for all even numbers £ > 2, hy € Z, such that
hi, = hg—2 or hj_o —p, | hy. For two finite histories h, b’ € H with even, positive cardinality
such that hy = hg, -1 or hg, 1 —h, hy, denote by (h, k') the history in H obtained when
h is followed by h'. Denote the set of infinite histories by H... Define the player function
P:H\ He — N.by P(0) = ¢, P(h) = c for every finite history h with odd cardinality |k,
and P(h) = hg, C N for every finite history h with even, positive cardinality.

We say that a history h € H converges for player ¢ if there exist z;(h) € Z and an even,
positive number kj,; such that u;(hy) = w;[Z;(h)] for every even k such that k,; < k < Kj,.
Let /{;272- to be the minimal such £, ;. A history h converges when it converges for all players,
in which case we omit the player index and just write z(h) and k. Convergence occurs, in
particular, when hk;g is a terminal state, or when A is finite.* Denote by H (resp., H;) the set
of all infinite converging histories (resp., for player 7). When an infinite history A does not
converge for player i, we say that h leads for that player to ‘swinging’, denoted by w, and
define z;(h) = w and kj); = co. Let Z = Z U {w}. Extend the utility function u; for each
player i to Z by defining u;(w) = —oo for all i (see e.g., Harsanyi 1974, Mariotti 1997 and

4QOur results would continue to hold if the stronger requirement hj, = z(h) was used instead of u;(hy) =
u;[Z;(h)] to define convergence.
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Flesch et al. 2010, Kimya 2020, K&R 2021)°. This assumption fits well with a negotiation
setting, as swinging behavior is similar to a disagreement outcome which all players prefer
to avoid. Nevertheless, we emphasize that swinging exists in our model in order to provide a
complete description of what might happen following any history. Importantly, our solution
concept does not rely on threats with swinging, on or off equilibrium path, in order to support
some outcome.

We would like our solution concept not to assume an exogenously given, specific process
which determines the coalition selected to make a choice. Therefore, in the FG, nature’s
behavior strategy, named protocol, is determined endogenously in the solution together with
the strategies of all coalitions. The protocol is a function o., defined over {h € H \ Ho |
P(h) = ¢} such that o.(h) at history h for which P(h) = ¢ is a probability measure defined
over Z when h is the empty sequence and over 2V otherwise, specifying the distribution
over initial states and over the coalitions selected to make a choice. Say that protocol
0. is regular if for every finite history h with odd cardinality |h|, o.(h)(S) > 0 for some
coalition S, if one exists, that has the effectiveness to move at the current state, i.e. S with
{z€Z|z%# hk,-1,hK,-1 —s 2} # . Say that protocol o, is full support if o.(h) has full
support at every history h for which P(h) = ¢. For coalitions, randomizations are considered
in the analysis but are never implemented. A pure behavior strategy of a coalition S is a
function og : {h € H\ Hw | P(h) = S} — Z such that og(h) € {z € Z | 2 = hg, -1 or
hk,-1 —s 2}, specifying the action taken by this coalition after any history in the game where
this coalition is selected to make a choice. A strategy profile is a vector o = [0, (0s)scn]
specifying the protocol o, and the strategy og of each coalition S. Denote by o_g the

protocol o, together with the vector of strategies for all coalitions except for S.

2.2 Subgame perfect equilibrium

We consider subgame perfect equilibria of the FG. For the purpose of defining such equilibria,
it is sufficient to consider subgames beginning with coalitions’ decisions, i.e. following finite
histories h with even, positive cardinality. Following such h, a strategy profile o generates
a probability measure over the infinite histories h’ beginning with h that are dictated by o.
Let Xj, denote the set of strategy profiles which, following h, generate a probability measure
having support consisting only of infinite converging histories. Our notion of farsightedness

relies on such strategy profiles for all h. A strategy profile o € ¥; generates for player i a

’The results in this paper would remain unchanged if instead one adopted the approach of positive
recursive games (e.g., Flesch et al. 2010), by normalizing u; to be non-negative with u;(w) = 0, asso-
ciate any infinite history h with an infinite sequence of payoffs consisting of a finite prefix of zero payoffs
from transient/non-absorbing states followed by an infinite, non-negative and constant suffix of the conver-
gent/absorbing state payoff u;[Z;(h)], and evaluate this sequence using the limit of the means criterion.
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distribution d,;, over Z(h') € Z. This distribution has countable support because there are
finitely many coalitions that may be selected and convergence occurs after a finite history.

Elements of this support are called final states. To define d,p, let

k0,
q)cr\h = {(h;v)kh[)

k' € H,h), = hy,Vk €0,1,..., K, and
o1 = o ()], Vh = Ky, Ky +2,... |

The set of final states according to strategy profile o following history h, i.e. the support of
da\ha is
\I’a|h = {E(h,) | h e q)a|h};

and then dojn(2) = > e, jzv)==) [kerrs1,:0043,.. 1, -1 o((R)E=)(R,) for z € Z. Given
o € Xy, a deviation of coalition S away from og may lead to a strategy profile not in 3.

olh

Therefore, more generally, any strategy profile o generates for player i a distribution d; ,,
over z;(h') € Z, still with countable support because there are finitely many coalitions that
may be selected and convergence to any z # w occurs after a finite history. Similarly, for
each player i define ®; 51, ¥; ,;, and d; ., relying on H,, z;(h') instead of H, z(h'), and let
digin(w) =1 =2 cq,  nz dion(2)-

Subgame perfection in our approach is required with respect to coalitional risk preference
extensions obeying first order stochastic dominance and coalitional dominance consistent
with the given player utilities u;. In a subgame that follows a finite history h with P(h) = 5,
coalition S has a strict preference relation g over strategy profiles, where weak preference
~s,» and indifference ~g, are defined from the strict preference g, in the usual way. When

~J

the coalition is a singleton player i, we assume the following.

Assumption 2.1 For each player i, the preference relation =;j is continuous, and o >;
o' is implied if d; ., strictly first order stochastically dominates d; ., where Z is ordered

according to u;.

Assumption 2.1 allows in particular for expected utility preferences. For our analysis, the
important implication of this assumption arises when considering a strategy profile which
leads to a degenerate distribution over final states, i.e. some 2° € Z for sure (with probability
1). Such a strategy profile is strictly worse than any strategy profile leading to a non-
degenerate distribution over final states which assigns positive probability only to states in
Z at least as good as 2°.

For general coalitions we assume the following.
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Assumption 2.2 For each coalition S, the preference relation >g, satisfies that o =g, o’
is implied if o 72, o' for all members i € S, with strict preference for at least one member

of S.

Given coalition preferences, we can define a strategy profile ¢ as a subgame perfect
equilibrium if o g (65,0_5) for every coalition S, every finite history h with P(h) = S,

and every strategy g for this coalition.

2.3 SPCS

In analyzing the farsighted game described above, we seek a solution concept that produces
a set of states considered farsighted stable. As mentioned in the Introduction, our proposed
solution is based on subgame perfection. In our approach, subgame perfection replaces the
various prescriptions embodied in all other farsighted solution concepts as to where a move
by a coalition, S, may lead to. To formalize where a move might potentially lead to under
subgame perfection, we say that a state 22 is reachable from a state z!' if there exists a
subgame perfect equilibrium strategy profile o, with ¢ € ¥, following any finite history h
with even, positive cardinality, such that 22 is a final state (i.e., the play converges to it with
positive probability) in a subgame in which 2! is the initial state. Denote by R(z!) the set
of states 2% reachable from z!' with full support protocol o., and by R*(z') the set of states
2? surely (i.e., with probability 1) reachable from z! with regular protocol o.. For a state
z to be a final state according to a subgame perfect equilibrium, it must be reachable from
itself.

We note that a solution concept defined as the vINM stable set with respect to the
reachability relation R or R* would not exist in many simple examples, e.g., in the roommate
game. By contrast, we show (Theorem 2.1), for example, that our solution concept exists
for all finite games. Furthermore, by contrast with, e.g., the RE approach, coalition S does
not know for certain where its move would end up, since it does not know with certainty the
identity of the coalition that will move at each state and the state it would move to, until
a final stable state is reached, if at all. Accounting for this inherent uncertainty requires
departure from the standard defition of vINM stability.

Essentially as all other farsighted solution concepts, such as those based on the RE
approach, as well as the LCS and the vINM F'SS, our solution concept, the SPCS, is based on
a consistency notion in the spirit of vINM stable sets (von Neumann and Morgenstern 1944).
Roughly speaking, this consistency notion requires the solution set X of states to satisfy
the following two properties: (i) farsighted internal consistency: for each state z € X, no

coalition prefers to move away from z, anticipating that such a move would eventually end
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up in X; and (ii) farsighted external consistency: for each state z ¢ X, there always exists
a coalition that prefers to move away from z, again anticipating that such a move would

eventually end up in X. This leads to the following definition.

Definition 2.1 A set of states X C Z is a Subgame Perfect Consistent Set (SPCS) if there
exists a subgame perfect equilibrium o with full support protocol o. such that the following
three requirements are satisfied:

(a) for any history h = (2,5, 2,8%,...,2,5") such that = € R(z) and {S'}I_] 2 2V \ 0,
ost(h) = z; and

(b) for any history h = (21,81, 21, 8%, ... 21, St 22 SU*Y) such that 2! # 22 and {S'}/_] 2
2N\ 0, the set of final states is U, = X N R(2%); and

(¢) z € X if, and only if, os(h) = z for any coalition S and any finite history h =
(2,8%,2,8%,...,2,9).

A set of states X C Z is a SPCS” if the protocol o, is only required to be reqular, and with
R replaced with R*.

Requirement (a) says that after choices by all coalitions to stay at an initial state z € Z
reachable from itself, z is the final state for sure. According to requirement (b), after an

2 and

initial move from an initial state by some coalition, all reachable states in X from z
only them, are final states. Both requirements hold on or off equilibrium path. Requirement
(c) incorporates the farsighted internal and external consistency properties described before
Definition 2.1, which therefore form an additional sense of fixed point apart from the usual
one delivered by equilibrium: The set X is exactly the set of states from which, on equilibrium
path, no coalition moves when selected as initial states. Whenever X satisfies Definition 2.1

with respect to o, we say that ¢ supports X as a SPCS (or SPCS").

2.4 Imitial analysis

We first demonstrate our solution by considering the example presented in the Introduction.

Example 2.1 We apply the SPCS (resp., SPCS*) to the game associated with Figure 1.1.
A first step in the analysis is to establish the reachability functions R, R*. To this end,
consider the strategy profile & defined for all h € H \ Hoo as follows: (i) .(h) for P(h) = ¢
assigns equal probabilities to each S C N, and (ii) s(h) for P(h) = S is equal to C if
S = {1} and h ends with kr,—1 = A orif S = {2} and kk,_1 = B, it is equal to D if
S = {3} and kg, -1 = C, it is equal to E if S = {4} and kg, -1 = C , and it is equal to kg, 1
otherwise. According to &, each coalition is equally likely to be selected to make a choice

whether to keep the current state or to move to a new state, and all coalitions move to the
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unique possible state whenever they can. The set of final states following any history h with
P(h) C N is Vs, = {D,E} if kx,—1 € {A,B,C} and Vs, = {kk,-1} when kk,_1 € {D,E}.
Furthermore, following any history h with P(h) = S, if S = {3} and kk,—1 = C then & leads
to utiliy 2 to Player 3 following their move from State C to State D, which is strictly better
than the uniform distribution over {2,0} if this player stays and then with equal probabilities
either {3} is selected and accordingly moves to D or {4} is selected and accordingly moves
to E. Similarly, if S = {4} and kk,_1 = C then & leads to utility 3 to Player 4 following
their move from State C to State E, which is strictly better than the uniform distribution
over {0,3} if this player stays and then with equal probabilities either {3} moves to D or
{4} moves to E. If S = {1} and kk,—1 = A or S = {2} and kk,—1 = B then & leads to
some non-degenerate distribution over {3,1}, which is strictly better than the sure utility of

1 if this player stays. Therefore og -

Y

sh 0 for any strategy o'y and & is a subgame perfect
equilibrium. Since any other subgame perfect equilibrium does not change Vs, following any
history h, the reachability functions R, R* coincide and are given by R(A) = R(B) = R(C) =
{D,E}, R(D) = {D} and R(E) = {E}.

Given R,R*, X = {D,E} is a SPCS (resp., SPCS*) for this example, supported by
the strateqy profile o = &. To see this, note that requirement (a) of Definition 2.1 is
satisfied since State D and State E are all the states satisfying z € R(z) (resp., z € R*(z)),
and both are terminal states. Requirement (b) is satisfied since kr,—1 € {A,B,C} implies
Vs = {D,E} = XN R(kk,—1) and kg, -1 € {D,E} implies V5, = {kx, -1} = X N R(kk,-1).
Requirement (c) is satisfied since kg, 1 € {A,B,C} implies o5(h) # kg, 1 for, resp., S =
{1},{2}, and {3} or {4}, and kg, -1 € {D,E} implies o5(h) = kg, -1 for all S. Since any
other subgame perfect equilibrium does not change W5, following any history h, there is no
other SPCS (resp., SPCS*).

We now investigate some basic properties of our solution concept, starting with non-

emptiness.

Proposition 2.1 If a SPCS or SPCS” ezists, then it is non-empty, and includes all terminal

states.

The following example demonstrates that existence is not guaranteed. In this example

the failure is due to the lack of a subgame perfect equilibrium.

Example 2.2 There is one player, Z is the set of natural numbers, u(z) = z for each z € Z,
and the player can only move from z = 1 to any z > 1 (with no other possible moves included
in the effectiveness relation). In this example there is neither a SPCS or SPCS™ because there
s mo subgame perfect equilibrium: when z = 1 is selected as an initial state, for any choice

the player can make there exists a strictly better choice.
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Despite such examples, the following proposition provides a sufficient condition for exis-

tence.
Theorem 2.1 Whenever Z is finite, there exists a SPCS’.

The argument in the proof of Theorem 2.1 initially shows that some state is surely
reachable from any state; this is then used in the construction of a set X using a finitely
terminating iterative procedure, for which a corresponding strategy profile ¢ is explicitly
constructed, which is then shown to support X is a SPCS".

When analyzing farsighted normal form games in Section 3, we will show that the as-
sumption that Z is finite is not necessary for existence. Indeed, a SPCS, as well as a SPCS",

can exist also for games with an infinite Z.

3 Farsighted Normal Form Games
In this section we analyze normal form games when they are viewed as farsighted games.

Definition 3.1 A k-normal form game is an abstract game (N, Z, (u;)ien, (—s)scn) such
that k is integer with 1 < k < |N|, Z = X;enA;, where A; is the set of alternatives available
to player i, and for each 2, z*> € Z and each coalition S C N, S # 0, the effectiveness
relation 2' —g 2% holds if, and only if, |S| < k and z! = 22 for each i ¢ S. A normal form

game is a k-normal form game for some k.

In view of Definition 3.1, our analysis of normal form games allows for the typical re-
striction to only individual player moves when k£ = 1, but also allows for coalitional moves
whenever k£ > 1. We view the concept of a pure Nash equilibrium as myopic, as it does not

involve farsighted reasoning. Formally, a myopic equilibrium is defined as follows.

Definition 3.2 In a normal form game, e € Z is a myopic equilibrium if u;(e) > u;(z) for
eachi € S C N and z € Z such that e —g 2.9

We show that the SPCS solution approach provides a surprising and striking conclusion
in the farsighted analysis of normal form games: whenever the game possesses a myopic
equilibrium, Pareto efficiency is always and necessarily achieved. Moreover, Pareto efficiency

is achieved even when coalition moves are not permitted.

SOur analysis also applies when considering Stackelberg games (and extensive form games with perfect
information in general) in their reduced normal form. This is justified by the view that in the farsighted
perspective, the leader and the follower are indistinguishable. Thus, in this case, the results concerning
farsighted normal form games apply when replacing pure Nash equilibria with pure Stackelberg equilibria.
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When analyzing farsighted normal form games we assume that each player’s utility func-
tion is continuous, and that a SPCS / SPCS" is required to be a compact set. To state the
main result we need some additional pieces of terminology/notation. We say that a state
z € Z is Pareto efficient if there does not exist a state 2/ € Z such that u;(z") > wu;(z) for
all i € N. Further, we write that Y ~ {z*} whenever a subset Y C Z is countable” and
consists of states that are all equivalent for all players, i.e. there exists z* € Y such that

u;(2") = u;(2*) for each player 7 and 2z’ € Y. We can now state our main result.

Theorem 3.1 (1) For any normal form game, if X C Z is a SPCS or SPCS’", then X ~
{z*} for some Pareto efficient z* € Z; and

(2) For any normal form game, if X ~ {z*} for some Pareto efficient z* € Z such that
wi(z*) > wi(e) for some myopic equilibrium e € Z and all i € N, then X is a SPCS and
SPCS".

Intuitively, the uniqueness of a SPCS or SPCS", up to equivalence, stems from the sure
reachability relation. Namely, we prove, in Theorem 3.1, that every state in a SPCS, X, is
surely reachable from any state in Z. If not all states in X are equivalent for all players,
there is a strictly worse state z in X for some player i. Then, since a move by player ¢ from
state z must end up at X (Definition 2.1(b)), and any state in X is surely reachable after
such a move, player i would prefer to move from state z (see Assumption 2.1). Indeed, she
cannot be worse off by such a move, and could possibly be strictly better off from it. Thus,
state z cannot be stable and does not belong to X. The Pareto optimality of the unique (up

*

to equivalence) z* in X is shown to follow from the reachability from itself of any state d
which Pareto strictly dominates x*, if such a state d exists. Indeed, intuitively, in a subgame
starting at state d, coalitions will not to move therefrom since any such move, by Definition
2.1(b), must end up at * at which they are all strictly worse off. This intuition is shown
to imply, by Definition 2.1(a,c), that state d is in X, contradicting the uniqueness (up to
equivalence) of z* in X.

For a 1-normal form game, as mentioned in the Introduction, the strategies supporting
a SPCS or SPCS™ in Theorem 3.1 are similar to ‘grim-trigger’ strategies commonly used in
folk theorems within the repeated games literature (see, e.g., Osborne and Rubinstein 1994),
adapted to our setting where a repeated stage game is not required. The strategies involve a
threat of reaching an undesirable outcome off equilibrium path in order to create incentives
to reach a good outcome on equilibrium path. These strategies could be thought of as social

norms that are publicly known to all players in the game. Since no player has an incentive to

7 As shown in the proof of Theorem 3.1, whenever X C R(z!) for any 2! € Z, requirement (b) of Definition
2.1 implies that X is necessarily a countable set.
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diviate from acting according to these social norms, they are indeed implemented, leading to
the outcome of the corresponding SPCS / SPCS". But note that contrary to folk theorems in
repeated games, which do not claim to achieve efficiency, we achieve efficiency as a necessary
implication. Thus the contribution of Theorem 3.1 is the conclusion that whenever the
normal form game possesses a pure Nash equilibrium, such social norms must lead to Pareto
efficiency, which is achieved rather than assumed.

Theorem 3.1 implies that a game with no Pareto efficient states cannot have a SPCS or
SPCS". Existence of Pareto efficient states is a mild condition satisfied in many interesting

settings as demonstrated in the following Example.

Example 3.1 Farsighted Prisoner’s Dilemma. In this 1-normal form game there are two
players, player 1 (the row player) and player 2 (the column player), each having two available

alternatives and utilities as in the following matrix.

D C
D|1,1]4,0
Clo,4]3,3

For this game there is a unique SPCS X = {(C,C)}. This SPCS is supported by the following
strateqy profile o : after a selection of any initial state, each player moves to the alternative
C and then does not move anymore, unless some player previously did not do so (or, both
players did not move from (D,D)), in which case each player moves to the alternative D and
then does not move anymore (see also proof of Theorem 3.1). As a result, the SPCS consists
of the cooperative outcome, (C,C), in the game. Note that for this example we show in
Section 4 that the LCS, the LCCS, the vNM FSS and any rational expectation function based
farsighted solution concept (all these solution concepts are described in Section /), when it
exists for this example, is equal to {(C,C), (D,D)}.

Herings et al. (2004) have shown that their solution concept satisfies coalitional ratio-
nality. That is, they have considered the social environment with a set of players N, set of
outcomes, Z = {xg,x1,...,2}, only the moves, vo —n x;, j = 1,...,k, are possible, and
one outcome strictly dominates all other outcomes. Specifically, for all i € N and j # 0, k,
wi(xy) > ui(x;) > u;i(xg) = 0. They have shown that in this social environment, the Pareto-
dominating outcome, i, is selected by each coalition. Each individual only agrees to move
to the Pareto dominating outcome, and blocks all other moves. We can naturally cast the
above social environment, used by Herings et al. (2004), as a farsighted normal form game,
in which the set of strategies of each player is {xg,z1,..., 2}, and for each j = 1,... k,

outcome z; would be realized if all players chose to play strategy x;, and otherwise, each
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player i would realize a utility w;(zo). Furthermore, as assumed by Herings et al. (2004),
for i € N, and j # 0,k, u;(zx) > u;(z;) > wi(xg) = 0. Then the SPCS in this game is
{(zg,....,x)}, since it is a Nash equilibrium in the associated normal form game which
strictly Pareto dominates all other strategy profiles. Thus, similar to Herings et al. (2004)
solution concept, the SPCS can also be viewed as satisfying coalitional rationality in the
same social environment considered therein even without resorting to coalitions.

Theorem 3.1 provides sufficient but not necessary conditions for a Pareto efficient state
to form a SPCS. Indeed, as demonstrated in the following example, we may have normal
form games where X = {z*} is a SPCS for some Pareto efficient z* that does not weakly

dominate any myopic equilibrium.

Example 3.2 Consider a farsighted 1-normal form game with two players, 1 and 2, corre-
sponding to the row and column players, respectively, where each player has two alternatives

and the utilities are described by the following matriz.

L R
T|1,1]1,2
B|o0,2]22

In this game the unique myopic equilibrium is (B,R), and thus is reachable from itself. By
Theorem 3.1, the set X = {(B,R)} is a SPCS. Note that (B,L) is not reachable from itself,
as player 1 can move and ensure the higher payoff 1. Similarly, (T,L) is not reachable from
itself, as player 2 can move and ensure the higher payoff 2. But note that (T ,R) is reachable
from itself, and moreover, the set X = {(T,R)} is also a SPCS. This is true due to the
following strategy profile: at (T,R) both players stay; at (B,R) player 1 stays and player 2
moves to (B,L), unless 2 previously stayed, in which case they both stay and (B,R) becomes
the final state; at (B,L) player 1 moves to (T,L) and player 2 stays; at (T,L) player 1 stays
and player 2 moves to (T,R). To see that indeed this strategy profile forms a subgame perfect
equilibrium note that an attempt of 1 to improve by moving to (B,R) fails because 2 punishes
by moving to (B,L); 2 does not mind moving to (B,L) because 1 would move to (T,L), in
which case 2 would move and end up at (T,R); if, on the other hand, 2 stays at (B,R) then
1 stays there also, leading to payoff 2 for player 2, which is not strictly better than the payoff
at (T,R).

The following example demonstrates the possibility of existence of a SPCS in a farsighted

normal form game despite the non-existence of a myopic equilibrium.
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Example 3.3 Farsighted Matching Pennies. Consider a 1-normal form game with two play-
ers (R and C), where each player has two alternatives and the utilities are described by the

following matriz.

1,-1|-1,1

Y

~1,1[1,-1

In this game there is no myopic equilibrium, so Theorem 3.1 does not apply. Still, any set
consisting of a single state in Z is a SPCS, supported by a strategy profile similar to the one
used in Example 3.2, i.e., the two players always stay at the single state in the given SPCS,
and at any other state the player that receives utility —1 mowes, unless both previously stayed
there, in which case no one moves anymore. In this case, the player that receives utility —1
in the single state of the given SPCS prefers to accept this utility than to insist on moving,
which would lead to swinging with utility —oo. In this way, every state is reachable from
itself. Each diagonal in the matriz is also a SPCS, supported by a strategy profile in which

the players move only from states not on the diagonal.

We now provide an extension of the analysis above that applies to normal form games
having no myopic equilibrium. A game is said to be generic if u;(z) # u;(2’) for any player
1 and any two distinct states z,z’. Furthermore, in the definition of reachability, consider
omitting the requirement that o € ¥, following any finite history h with even, positive
cardinality. Under this extended reachability and the genericity assumption, Theorem 3.1
can be strengthened to an if and only if statement: for any generic normal form game, X C 7
is a SPCS, equivalently a SPCS’, if, and only if, X = {z*} for some Pareto efficient state
z* € Z. Intuitively, regardless of the other players’ actions, any coalition can threaten with
a swinging final state in a farsighted normal form game if it so desires, simply by always
electing to change the current state whenever it is selected to make a choice. Such a threat
can be used instead of a myopic equilibrium within the strategy profile supporting a SPCS
/ SPCS®. We will now show that this result can be strengthened even further: consider
an extension of Definition 2.1 allowing swinging, w, to be a final state and a member of a
SPCS / SPCS", where w is assigned some utility % (finite or —oco) for player . Indeed, as
argued above, in a generic normal form game, regardless of the other players’ actions, any
coalition can force a swinging final state in a farsighted normal form game if it so desires.
The definitions of W,;, and d,;, are now extended to any strategy profile o, coinciding with
W, oin and d; o, for all i. Note that Proposition 2.1 still holds: a SPCS / SPCS” is always

non-empty. This leads to the following result.

Theorem 3.2 For any generic normal form game, X C Z is a SPCS, equivalently a SPCS”,
if, and only if, X = {2*} for some Pareto efficient state z* € Z such that u;(z*) > u¥ for
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alli € N.

Theorem 3.2 provides us with necessary and sufficient conditions for the existence of a
SPCS / SPCS" when swinging is allowed and its normalized utility is zero for all players.

Reflecting back on Example 3.3 we can appreciate the effect of allowing a swinging behavior.

Example 3.4 Farsighted Matching Pennies with swinging assigned utility u;” = 0. By The-
orem 3.2, the singleton set {w} consisting of a swinging final state is the unique SPCS. This
is true because w is the unique Pareto efficient state in Z providing all players with non-
negative utilities (note that any other state is also Pareto efficient but fails the non-negativity

condition, thus it is not reachable from itself).

3.1 Related Literature on Stability in Normal Form Games

Greenberg (1990) was the first to study myopic stability in non-cooperative games. He
has characterized the (myopic) vINM solution in the 2-player Prisoners’ Dilemma, and, for
example, has proven existence of the (myopic) vNM solution for any 2-player normal form
game with finite strategy sets. The vNM FSS in normal form games was first studied
by Muto (1993), who has shown that in the Prisoners’ Dilemma problem, the vNM FSS
coincides with the (myopic) vNM solution®. Suzuki and Muto (2005) have shown that
in the class of n-person Prisoners’ Dilemma games, with coalitional moves, any individually
rational and Pareto efficient outcome is a vINM F'SS and no other vINM F'SS exists. Kawasaki
(2015) and Bloch and van den Nouweland (2021) studied the class of two-person normal
form games with finite strategy sets. They proved that, with pairwise moves, any strictly
individually rational and Pareto efficient strategy profile forms® a singleton vNM FSS. They
have further characterized the vINM FSS for all two-person normal form games with finite
strategy sets. They have shown, for example, that the Prisoners’ Dilemma problem is the
only two-person normal form game that does not have a singleton vINM FSS. Indeed, it follows
from Proposition 5.1 in Bloch and van den Nouweland (2021), as well as from Proposition
3.7 therein, and Muto (1993)’s result mentioned above, that the vINM FSS in the Prisoners’
Dilemma problem contains the Nash equilibrium. By comparison, we have shown in Example
3.1 that in the Prisoners’ Dilemma problem, the SPCS consists uniquely of the pair of

strategies yielding the cooperative (socially optimal) solution.

8For related studies which investigate the vNM FSS in more general normal form games than the Prisoners
Dilemma, see, e.g., Suzuki and Muto (2005), who allow for coalitional deviations, and Nakanishi (2009),
wherein only individual deviations are possible.

9Kawasaki (2015)’s proof had to invoke a mild restriction on the payoffs.
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We note that although the SPCS and the vNM FSS do not coincide in the Prisoners’
Dilemma problem, they do coincide in some other instances of two-person normal form games.
For example, Bloch and van den Nouweland (2021) have proven that, for two-person normal
form games, (i) if a strategy profile s is a Nash equilibrium that is not Pareto dominated
by any other strategy profile, then {s} is a singleton farsighted stable set (Corollary 4.9
therein), and (ii) if s Pareto dominates all other strategy profiles, then {s} is a singleton
farsighted stable set and it is also the unique farsighted stable set (Corollary 4.10 therein).
Then, it can be shown that our Theorem 3.1 implies that in case (i), {s} is also a singleton
SPCS for n-person normal form games, and that in case (ii), {s} is also the unique SPCS
for n-person normal form games.

D&V (2020) have introduced a three-country pollution abatement game in which each
country i has two strategies, denoted as x; € {0, 1}, representing low cost and high cost
abatement technology strategies, respectively. For a given technology strategy vector by
the three countries, (x1,z,x3), the utility for country i is given by w;(z1, 22, x3) = z; —
10> i+ 7j)?. They modelled the pollution abatement problem as a normal form game in
which the three countries select their abatement technologies simultaneously. In this normal
form game formulation, x; = 1,7 = 1,2, 3, is the unique Nash equilibrium, while the set
of strategy vectors which maximize the sum of the payoffs to the three countries is T' =
{(0,0,0),(1,0,0),(0,1,0),(0,0,1)}. Then, it was proven by D&V (2020) that their history
dependent farsighted solution concept, HREF'S, consists of T', while T" cannot be sustained
as the history independent version of HREFS, REFS, introduced by D&V (2017)!°. Clearly,
since T is also the set of Pareto efficient strategy vectors dominating the Nash equilibrium,
it follows from Theorem 3.1 that each strategy vector in T is a singleton SPCS for the

three-person pollution abatement problem.

3.2 Some Applications

In this section we briefly illustrate the application of the SPCS approach to analyze various

classical oligopolistic settings, and some further examples.

3.2.1 Farsighted Bertrand and Cournot Competition

In the Bertrand and Cournot examples discussed in this subsection, as is the case in, e.g.,
Xue (1998), Masuda et al. (2000) and Suzuki and Muto (2006), the players “compete” only
once, based on the final quantities or prices reached. Intermediate quantities or prices are

transient states in a tacit negotiation. They are not offered to the consumers and they

10Gee definitions of these two solution concepts in Section 4.
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bear no utility consequences whatsoever to the players. Thus, only the final values matter.
Swinging should be avoided, since if it occurs, revenues that could be realized by the players
will be forfeited. In the following we show that the SPCS extends the efficiency results
obtained in the literature for symmetric settings using vNM FSS (Masuda et al. 2000).

Farsighted Bertrand Competition Consider a market with n sellers of a homogeneous
product that are engaged in farsighted price competition, in which seller ¢ sets price p;. The
sellers face a downward sloping demand function D(p), where p is the lowest among the
prices they set. Suppose that the sellers have equal sales power, so that when the same price
is set by several sellers, each of them sells the same quantity. Assume further that there
are no fixed costs and the unit cost of the product for seller i is ¢;, with ¢ = min; ¢;, When
the unit costs are not all equal there is no real price competition because the seller with the
lowest unit cost can always set the price slightly below the second lowest unit cost and gain
the entire market alone.

It is well known that when this situation is viewed as a normal form game, there is a
unique Nash equilibrium in prices: all sellers with cost ¢ set the price p* = ¢ and the market
is split between them equally with zero profit to each of them.

For this setting a SPCS is X = {z*} where z* is a Pareto efficient state in which several

(possibly all) sellers with cost lower than the monopolistic price, i.e. the price p that solves

mgX(p —¢)D(p),

each sets this price, which allows them to share the monopolistic profit equally among them.
The remaining sellers (if any) set some price higher than the monopolistic price and receive
zero profits. This follows from Theorem 3.1 because such states z* are the only Pareto
efficient states in Z that weakly Pareto dominate the unique Nash equilibrium state. For
comparison, Masuda et al.(2000) show for symmetric settings that the LCS contains all states

with positive profits to all firms, including Pareto non-efficient states.

Farsighted Cournot Competition Consider a market with n sellers of a homogeneous
product that are engaged in farsighted quantity competition, in which each seller ¢ sets
quantity ¢;. The sellers face a decreasing inverse demand function determining the market
price as, for simplicity, max{a — Q,0}, where Q = >, ¢; is the total quantity sold. Suppose
that there are no fixed costs and the unit cost of the product for seller ¢ is ¢;. Thus the profit
to seller ¢ is m; = ¢;(a — Q — ¢;) when @ < a and zero otherwise.

It is well known that this normal form game has a unique Nash equilibrium in quantities,
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in which player 7 sells quantity

. 1
¢ =a—c — Zj(a—cj)

n+1

and makes profit 77 = (¢)? (this holds under the assumption that a > (n + 1) max; ¢; —

> ; ¢j, otherwise the market is not large enough to include all sellers in equilibrium). In the

a—c

n+1

symmetric case in which ¢; = ¢ for all 4, each player sells in equilibrium and makes profit

(351)%
To find the SPCS solution for this setting, Theorem 3.1 says that we need to compute
the Pareto efficient states that weakly Pareto dominate the unique Nash equilibrium state.
.
a—ch—Q
can be written as a function f of the total quantity sold and the other sellers’ profits, given

by

Since in any state z € Z, the quantity sold ¢; = for all j, the profit m; of any seller ¢

Ty
j#ia—cj —Q

F1Q: (m)jzl = (@ =)

Therefore a Pareto efficient vector of profits, for which 7; > 77 for all j # i, must satisfy

)a—c—Q)

that m; maximizes f[(), (7;) .| over the variable () and subject to the constraint m; > 7.

In the symmetric case, f[Q, (7;);.] simplifies to Q(a — ¢ — Q) — >_,; 7;, for which the

maximal @) equals “5¢, independently of the other sellers’ profits. In this case seller i’s

)? = 2,47, as long as m; > 7 for all j (including i), and the total

a—c

2
Such Pareto efficient states always exist because for all n > 2, the total

profit is m; = (

)

profit is always higher than the total Nash equilibrium profit, n(g—jr‘i)z This allows the total

profit is (

profit increase to be shared in some way between the sellers. Therefore the SPCS reasoning
implies that the sellers would share between them a monopolistic total quantity, allowing
them to share a monopolistic total profit in a way that improves for each of them on the
Nash equilibrium profit. For comparison, Masuda et al.(2000) show for symmetric settings
that the LCS contains all states with non-negative profits to all firms, including Pareto

non-efficient states.

3.2.2 Decentralized Supply Chain Contracting

The SPCS can be used to analyze decentralized supply chains and can be shown to lead
to full coordination and Pareto efficiency. We demonstrate this general point in the classic
setting of a vertical decentralized supply chain, based on the newsvendor model, with a
single supplier and several competing retailers. As is well known, system coordination and
Pareto efficiency are trivially achieved in a cooperative bargaining /negotiation modelling of

this setting (see, e.g., Nagarajan and Bassok 2008). We demonstrate that they can also be
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achieved in a non-cooperative modelling of this problem when players are assumed to be
farsighted. Moreover, coordination is achieved contrary to the inability of revenue sharing
contracts to do so in general (see Cachon and Lariviere 2005).

The market consists of n retailers that face uncertain demand for a differentiated product,
where retailer i’s demand D;(p1, ..., s, €) is decreasing in their own unit price p;, increasing
in each of the other retailers’ unit prices p; and depends on a common random variable ¢.
Each retailer decides about the price p; and the inventory level ¢; to be ordered from a single
supplier before demand realization. The supplier charges each retailer a wholesale price w
per unit ordered and a share, m, of the retailer’s total revenue. The unit cost for the supplier
is ¢ with no fixed costs.

When this arrangement is viewed as a revenue sharing contract signed between the sup-
plier and the retailers, the setting becomes a two stage model: first the supplier sets the

1'! contractual terms across the retailers, and then the retailers

charges, (w, m), under equa
set the prices, p;, and order the quantities, ¢;. Solving for Nash equilibrium of the second
stage, each retailer’s profit, (1 — m)p;E. min{q;, D;(p1,...,pn,€)} — wq; (where Ep is the
expectation operator over the distribution of the random variable ¢), is maximized given the
other retailers’ choices, leading to equilibrium prices and quantities as a function of the con-
tract parameters (w,m). In the first stage one seeks a contract that coordinates the supply
chain by achieving the system optimal quantities and prices. Note that such revenue sharing
contracts, when the retailers must be offered equal contractual terms by the supplier, are
unable to coordinate the system when the retailers are asymmetric (see, e.g., Cachon and
Lariviere 2005 and Krishnan and Winter 2011).

The implications of the SPCS reasoning for this setting are very different. A state z in
the game consists of a vector [w,m, (p1,q1),- - (Pn,qn)], so the wholesale price, the revenue
share m, the inventory levels ¢; and the prices p; are viewed as alternatives than can be
altered in the game tree without limit. By Theorem 3.1, we look for the Pareto efficient
states that weakly dominate the Stackelberg equilibrium. The wholesale price w and the
revenue share m do not affect the system profit, but only determine how it is shared between
the players. Therefore a SPCS is a single state z* consisting of optimal prices and quantities
for the system, and wholesale price and revenue share values that split the optimal system
total profit such that each player is weakly better off than in the equilibrium. Such wholesale
price and revenue share values exist whenever the equilibrium system profit is strictly lower
than the optimal one. Therefore, in contrast to the traditional equilibrium analysis, the

SPCS reasoning leads to system coordination.

1Equal contractual terms are legally required in the USA by the Robinson-Patman Act of 1936.
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3.2.3 Farsighted Network Formation

Networks are often used to model interactions among individuals in various social and eco-
nomic situations, see, e.g., Jackson (2010). The individuals, referred to as players, are
represented by nodes in a graph and a link, or edge, (4, 7), in the graph stands for an existing
interaction between players ¢ and j. Players strive to maximize their utilities from inter-
actions with other players, and for that purpose, establish links or dissolve existing ones.
The two main questions addressed in the literature are which networks, to be referred to as
stable networks, could emerge from such a process and whether stable networks are efficient,
i.e., maximize the total utility associated with the interactions among all players. In static
models of network formation, the players derive their utilities only from the final network
that has been reached, i.e., a stable network.

Evidently, there is a tension between stability and efficiency. That is, stable networks are
not necessarily efficient. In the static case, this result was shown by Jackson and Wolinsky
(1996) for the myopic case, and for the farsighted case by Herings et al. (2009). In the
dynamic case, where players get discounted utilities during the entire network formation
process, the tension between efficiency and stability was confirmed by Dutta et al. (2005).
By contrast, however, Kimya (2020) has proven, for example, that in the dynamic case, under
some conditions, every efficient network can be supported as the prediction of his farsighted
solution concept, (C)ECB. Finally, Luo et al. (2021), who have used the myopic-farsighted
stable set to study network stability with both myopic and farsighted players, have shown
that, under some conditions, replacing myopic players with farsighted players alleviate the
tension between stability and efficiency.

We propose to model network formation as a farsighted 1-normal form game. For each
player i, the set of alternatives, A;, consists of all coalitions in N \ {i}, and player i’s action,
S C N\ {i}, represents the set of players/nodes with whom she would like link. The
network, at the outset of any stage k, consists of all edges, (i, j), for which players i and j,
in their most recent moves prior to stage k, if any, have both included one another among
those players with whom they want to link. Note that existing network formation processes
studied in the literature involve coalitions move, mostly by pairs of players who form links
between themselves. In the network formation process embodied in the farsighted 1-normal
form game, only individual players are involved.!?

To present our result, we need to introduce some basic definitions. An allocation rule
associated with a network ¢ allocates the value of g, v(g), among the players. It is commonly

assumed that the value function v(g) is component additive, that is, v(g) is equal to the sum of

12For a related network formation literature in which individual players, unliterally, establish costly links
to access benefits generated by other players, see, e.g., Bala and Goyal (2000).
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the values of its maximally connected components, and that an allocation rule is component
balanced, meaning that for each maximally connected component, C, of g, the value, v(C),
is divided among the players in C.

Now, it is usually assumed that v({i}) = 0 for all 7. Indeed, Dutta et al. (2005) have
normalized the value of singletons to zero, and for some network models studied in the
literature, see, e.g., Jackson and Wolinsky (1996) and Dutta et al. (2005), the values of
singletons implied by the context of the applications are zero. So, without much loss of
generality, we will assume that the values of singletons are zero. Finally, note that for non-
negative value function and allocation vector, there is a Nash equilibrium in the myopic
normal form game associated with network formation, wherein the utility for each player is
zZero.

Then, our contributions to mollifying the tension between efficiency and stability in
network formation, achieved only by actions taken by individual players, follows from part
(2) of Theorem 3.1:

Corollary 3.1 Assume a non-negative and component additive value function and compo-
nent balanced and non-negative allocation vector, and consider the farsighted 1-normal form
game representing a network formation process carried only by individual players. Then, (i)
a network g is Pareto efficient if and only if {g} is a SPCS or SPCS*, in particular, if
g s a socially efficient network then {g} is a SPCS and SPCS*, and (ii) if there exists a
network g that strictly Pareto dominates all other networks, then {g} is the unique SPCS
and SPCS *.13

4 Comparison to the Related Literature

We briefly review in this section related farsighted solution concepts introduced in the lit-
erature, and use Example 1.1 discussed in the Introduction, as well as other examples, to
compare the SPCS to these solution concepts.

The SPCS, as well as many other related solution concepts, e.g., those introduced by Chwe
(1994), M&V (2004), D&V (2017), D&V (2020), and K&R (2021), are defined in a general
setting, described by an abstract game, as introduced in Section 2. Indirect dominance,
first proposed by Harsanyi (1974) in the context of coalitional games, and then employed by
Chwe (1994) to introduce the Largest Consistent set (LCS) for abstract games, is defined as

follows:

13See a similar result by Herings et al. (2009) and their pairwise farsightedly stable set.
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Definition 4.1 [Harsanyi 1974, Chwe 1994]. Indirect Dominance: We say that a state
a € 7 is indirectly dominated by a state b € Z, or b > a, if there exist states ag, ay,...,a, €
Z, where ay = a and a,, = b, and coalitions Sy, S1,...,Sm-1, such that a; —g, a;+1 and
u;(b) > u;(ay) for alll =0,1,...,m—1 andi € S,.

Definition 4.2 [Consistent Set, Chwe (1994)]. A set K is consistent if K = {x € Z | Yy, S
with v —g y, 3z € K, where either z =y or z > vy, such that u;(x) > u;(z) for somei € S}.

The LCS employs a pessimistic, rather than an optimal criterion for a move. That is, a
move by coalition S from a State z is rejected if it could lead, via indirect dominance, to a
stable state at which not all members of S are strictly better off. Nevertheless, the LCS has
remained an important solution concept that has received much attention in the literature,
and its relation to other solution concepts are often explored.

The vINM solution for abstract games, wherein ordinary dominance is replaced by indirect
dominance, referred also as the vNM farsighted stable set (vNM FSS), is contained in the
LCS (Chwe 1994). It leads to sharper results than the LCS in several instances, such as
symmetric Cournot and Bertrand oligopoly markets (Suzuki and Muto 2006 and Masuda et
al. 2000), and one-to-one matching games (Mauleon et al. 2011 and Diamantoudi and Xue
2003), and it was further shown to generate new insights into patent licensing negotiation
(Hirai et al. 2019). However, the vNM FSS could still yield not very insightful results.
For example, for a game based on the provision of a perfectly ‘lumpy’ public good, without
coalitions, it was shown by Kawasaki and Muto (2009) that the vNM FSS includes almost
all individually rational outcomes.

Page and Wooders (2009) have introduced a model of network formation whose primitives
consist of a set of networks, players’ preferences, rules of network formation, and a dominance
relation on feasible networks. As noted by the authors, their network formation game can
be viewed as an abstract game with a finite set of states and a dominance relation among
states which could be either direct dominance, indirect dominance, or path dominance.

It should be noted that, prior to Chwe, Greenberg (1990) has developed the theory of
social situations, wherein he has introduced the concept of a stable standard of behavior
(SB), which is claimed to capture perfect foresight by individuals or coalitions. Some precise
relationships between a stable SB and the LCS were investigated by Chwe (1994). Xue (1998)
has argued that the LCS captures only partial foresight, and by employing Greenberg’s (1990)
framework, characterized a set of paths which constitutes a stable SB. See also Brams (1994)’s
theory of moves (also Brams and Wittman 1981, Kilgour 1984) for a dynamic, finite game

tree approach to two-player, two-strategy normal form games, and Mariotti (1997), wherein
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a farsighted solution concept similar to a stable SB is shown to achieve partial efficiency in
normal form games with coalitions.

The pessimistic criterion embedded in the definition of the LCS is somewhat mollified
in Mauleon and Vannetelbosch (M&V, 2004) Largest Cautious Consistent set (LCCS). The
LCCS is a proper refinement of the LCS, which could possibly be empty, wherein players are
less pessimistic than in the LCS. Specifically, as argued by M&V, a state is never farsighted
stable if a coalition, S, can move therefrom, and by doing so there is no risk that some
coalition members of S will end up worse off, while such a move could also lead to a stable
state at which some or all members of S being strictly better off. The LCCS does provide
new insights in some instances, as shown, e.g., by M&V (2004) in their study of coalition
formation, and by Granot and Yin (2008) in their analysis of a single-period two-stage supply
chain problem.

This criticism against the LCS, LCCS, and vNM FSS has led to the development of
other farsighted solution concepts for abstract games, see, e.g., D&V (2017), D&V (2020),
Kimya (2020) and K&R (2021). These new farsighted solution concepts incorporate various
maximality requirements for coalitions’ moves, and they further adopt the logic underpinning
the vINM solution and satisfy vINM type internal and external stability requirements. They
employ a modification of Jordan’s (2006) expectation function and introduce an expectation
function, F, to describe the transition from one state to another, as well as the coalition that
is supposed to affect that transition in the abstract game. The RE function I’ ensures that
all players have commonly held beliefs about the sequence of coalitional moves, if any, from
every state.!* Thus, F predicts with certainty the unique coalition, S, to be active at any
state and the derived state, after the move by S, if any. If no coalition wants to change the
current State, z, then z is referred to as a stationary state of F'. An expectation function,
F, is said to be absorbing if for every z € Z, the unique path prescribed by F' leads to a
stationary point in Z.

An absorbing RE function F' is said to be rational if it satisfies vINM type of internal and
external stability requirements, as well as a maximality requirement, in the sense that the
move by any coalition from a non-stationary point must be maximal. That is, there does not
exist another move leading to another stationary point at which all members of the moving
coalition are strictly better off. As noted by D&V (2017), their internal stability require-
ment is weaker than the ordinary vINM internal farsighted stability requirement, since the
farsighted objection has to be consistent with F'. For the same reason, their external stability
requirement is stronger than the ordinary vINM external farsighted stability requirement.

D&V (2017) have proposed the set of all stationary points of a rational expectation F as a

14See Bloch and van den Nouweland (2020), for farsighted stability with heterogeneous expectations.
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farsighted stable set and refers to it as the rational expectation farsighted stable set (REFS).
They have further introduced the strong rational expectation farsighted stable set (SREFS),
which consists of all stationary points of a rational expectation F', in which the maximality
requirement is replaced by a stronger requirement, referred to a strong maximality. As shown
by D&V (2017), in general, both REFS and SREFS may not exist, but they were shown to
exist for some classes of games.

Dutta and Vartiainen (2020) have extended D&V (2017) to history dependent ratio-
nal expectation functions, and have proposed the history dependent rational expectation
farsighted stable set (HREFS) and the history dependent strong rational expectation far-
sighted stable set (HSERFS) solution concepts, which are the history dependent analogues
of REFS and SREFS, resp. A history at State z is the sequence of past moves and the coali-
tions involved in these moves until State z was reached. A history dependent expectation
function specifies the active coalition and its move for all possible current states and past
histories. Clearly, history independence is a special case of history dependence. Thus, as
noted by D&V (2020), REFS and SREFS, are special cases of HREFS and HSREFS. Indeed,
D&V (2020) were able to derive non-emptiness results for their history dependent farsighted
solution concepts, which are not available for the REFS and SREFS solution concepts.

We note that in the rational expectation function solution concepts introduced by D&V
(2017), REFS and SREFS, as well as those introduced by D&V (2020), HREFS and HSERFS,
progression in the associated abstract game specified by a RE function F' is done along
indirectly dominated paths. That is, for a given RE function F', or RE F' with an associated
history, H, if F' specifies a path, p, from some state z to a stationary state z*, then the
members of all the coalitions involved with the progression from z to z* strictly prefer the
utilities they derive at z* than those they attain at the states on p wherefrom they moved
according to F.

Karos and Robles (2021) have pointed out that when coalitions are provided with an
opportunity to move from a State z, they should be farsighted enough so as to compare the
consequences of their move from z to remaining at z and let other coalitions move from z.
Indeed, K&R (2021) introduced the extended expectation function, F'; which assigns to each
state z, an ordered list (F'(2),... , F*?)(z)), where I} is the D&V (2017) basic expectation
function that specifies the transitions among states, and each F7(z) consists of a coalition,
S7(z), and a unique state, f7(z), to which coalition S7(z) can move if all previous coalitions
on the ordered list, S¥(z), k = 1,...,j — 1, have elected not to move from z.

A rational extended expectation function (REEF) is an extended expectation function
that, similar to REFS, SREFS, HREFS, and HSREFS, satisfy vINM type internal and exter-

nal stability constraints, as well as satisfying the (ordinary) maximality constraint introduced
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by D&V (2017).

Specifically, for each z € Z let S'(2),. .., S*%)(2) be the ordered list of coalitions at State
z, 5o that coalition S'(z) will get to move from state z to State f*) if all previous coalitions
on the ordered list elected not to move from z. Then K&R (2021) have imposed the following
requirements from their rational extended expectation function:

Internal Stability (I). For all z € Z and all coalitions 7' ¢ {S(2),...,S*®)(2)} there is
| < k(2) such that for each y € Z with z — y thereis i € T for which u;(f(2), F) > w;(y, F).

External Stability (E). For all z € Z and for all [ = 1,...,k(z) — 1, it holds that
ui(fU(2), F) > u;(f4(2), F) for all i € S'(2).

Maximality (M). For all z € Z and for all [ = 1,...,k(z) — 1 it holds that if there is
y # f'(z) such that z — g, y, then there is ¢ € S'(z) for whom u;(f'(2), F) > wi(y, F).

A rational extended expectation function (REEF) is an extended expectation function
that satisfies the I , E , and M requirements.

As noted by K&R (2021), their internal and external stability constraints are stricter than
those imposed by, e.g., D&V (2017), since coalitions/players in their model also need decide
whether to move or not. The set of all stationary points of a rational extended expectation
function is an equilibrium stable set (ESS). If it exists, the ESS is not empty. However,
similar, e.g., to the vINM stable set, vNM FSS, and REFS, the ESS may not exist, as is the
case, e.g., in the farsighted roommate problem.

Kimya (2020) has studied farsightedness in the class of extended coalition games. An
extended coalition game is closely related to an abstract game, with the important exception
that in an extended coalition game, the utilities of players are defined over the paths of play
rather than on terminal states, which allows the model to accommodate both the static and
dynamic approaches to farsightedness. Kimya employs the concept of a coalition behavior,
which, like an expectation function, provides a complete plan of action that assigns a unique
action to each state, to ensure that players have commonly held beliefs about the coalitional
moves at any state. Thus, it prescribes a unique terminal path to each node of an extended
coalitional game, where a terminal path is either infinite or ends with a terminal state,
wherefrom there is no move.

Kimya (2020) has introduced two related solution concepts, the equilibrium coalition
behavior (ECB) and the credible ECB, CEBC, and has shown, for example, that CECB
exists in any finite extended coalitional game. He has further explored the relationships
between his solution concepts and other related solution concepts in various classes of games,
such as, e.g., farsighted network formation games briefly covered in Sub-Section 3.2.3.

Let us next analyze several simple examples of farsighted abstract games, and compare

the predictions of the various farsighted solution concepts of these examples.
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First, recall Example 1.1. As discussed in the Introduction, and further elaborated on in
Section 2, the unique SPCS of the abstract game associated with Figure 1.1 is {D,E}, and
as such, it awards Players 1 and 2 utility of either 1 or 3.

Let us next study the other farsighted solution concepts for Example 1.1, starting with
the LCS. Again, clearly, as previously mentioned, States D and E are contained in the LCS,
as well as in all other farsighted solution sets. Further, State E indirectly dominates States
A,C, and no other indirect dominance relation holds in this example. Since a move by Player
2 from State B to State C could end up only at State E at which Player 2 is not strictly
better off, State B also belongs to the LCS. In contrast, State A is not in the LCS since a
move by Player 1 from State A can only end up at State E at which Player 1 is strictly better
off. We conclude that in Example 1.1, LCS = {B,D,E}. Similarly, since also according to
the LCCS there is complete certainty in this example regarding the state at which any move
may end up, the LCCS = {B,D,E} too. Finally, since State E indirectly dominates State A,
State A is not contained in the vNM FSS. However, State B is not indirectly dominated by
any other state, and thus, State B is in the vINM FSS, and we conclude that the vNM FSS
of Example 1.1 is also {B,D,E}.

By comparison, let us apply the RE approach, REFS and SREFS (D&V 2017), HREFS
and HSREFS (D&V 2020), to the above example. According to this approach, a moving
coalition at each state knows with confidence the final state her move would lead to, and all
coalitions on the path in the abstract graph leading to the final state are strictly better off
at the final state than at the state wherefrom they moved. Player 3 will not move from State
C since they are strictly worse off at State D than at State C. Player 4 is strictly better off
moving from State C to State E, therefore moves by Players 1 and 2 to State C would end
up at State E, where Player 1 is strictly better off than at States A, while Player 2 is just
equal off. Then, in this case, Player 1 (resp., 2) will move (resp., stay) at State A (resp., B),
leading to {B,D,E} as a stable set. We note that history dependence, as allowed by D&V
(2020), does not alter the conclusion.

According to the K&R (2021) modification of the RE function approach, with each state,
z, there is an associated ordered list of the effective coalitions that get to move at State z.
So, in the above example, if Player 4 gets to move first at State C, they will elect to do so,
which would lead to {B,D,E} as a stable set. However, if Player 3 gets to move first at State
C, then, in contrast with the solution discussed in the previous paragraph, they will do so,
to preempt a later move by Player 4 to State E, at which Player 3 is strictly worse off than
at State D. Indeed, K&R (2021) argue that farsighted players should strictly prefer to carry
out a pre-emptive move from some state z, which would lead to a stable state, say, y, at

which they are strictly worse off, rather than let another coalition move from state z, which
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would end up at another stable state at which they are even strictly worse off than at state
y. But, at State D, Player 1 is equal off than at State A and Player 2 is strictly better off
compared to State B. Thus, if Player 3 gets to move first at State C, Player 1 will not move
from State A, while Player 2 will move from State B, yielding {A,D,E}, as another stable set
according to K&R (2021) modification of the RE function approach. We conclude that the
stable sets according to the RE solution concepts predict the sets {A,D,E} and {B,D,E}.

Next, let us consider the prediction of Kimya’s (2020) static solution concepts, (C)ECB,
for Example 1.1. Thus, we assume that payoffs are realized only at the final states. Consider
Case (i), where coalition behavior, ¢', prescribes a move by Player 4 at State C, and moves
by Players 1 and 2 at States A and B, respectively. Then, neither Player 1, nor Player
2, nor Player 4 has a profitable deviation from ¢'. Thus, ¢' is a (C)ECB, leading to a
stable set {D,E}. In Case (ii) consider the coalition behavior, ¢®, where Players 1 and 4
move but Player 2 stays at State B. Again, the players do not have a profitable deviation
from ¢?, yielding a stable set {B,D,E}. A similar analysis, where Player 3 moves at State
C with no credible profitable deviation, would yield a CECB and the stable sets {A,D,E}
and {D,E}, and we conclude that the static CECB solution concept yields the stable sets
{A,D,E}, {B,D,E} and {D,E}.

Thus, farsightedness, as embodied in all solution concepts other than the SPCS, stipulates
that either Player 1 or Player 2 may forgo a non-deterministic prospect of utilities 1, 3, and
remain at either State A or B, respectively, at which they will attain with certainty a utility
of 1. Note that, in part, the reasoning behind the preference within the SPCS for a non-
deterministic prospect of utilities 1,3 is in the spirit of the LCCS modification to the LCS,
which, by contrast with the LCS, prescribes a move when it may lead to strictly better states
and to no worse states. Indeed, the SPCS, as per Assumptions 2.1 and 2.2, is guided by first
order stochastic dominance to decide whether a state wherefrom a move is initiated is stable.
Nevertheless, the SPCS delivers here the intended prediction, whereas the LCCS fails to do
SO.

Next, recall the farsighted Prisoners’ Dilemma (PD) game analyzed in Section 3, with
only individual moves. In the abstract game representation of the PD, Player 1 (row player)
can move between States (C,C) and (D,C) and between States (C,D) and (D,D), while Player
2 (column player) can move between States (C,D) and (C,C) and between States (D,C) and
(D,D). The following matrix describes the indirect dominance > for this game, indicating

the cells for which the column state is indirectly dominated by the row state. For comparison,
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our reachability relations R, R* are also indicated in a similar manner.

(c,c) (b)) (bb) (D,C)

(CC)|RR|] RR |RER| RR
(CD) | >

OD)| RR*|>RR | RR* | >R R
D,C) | >

As can be seen from the above table, the state corresponding to (D,D) is not indirectly
dominated by any other state, the states corresponding to (C,D) and (D,C) are indirectly
dominated by (D,D), and the state corresponding to (C,C) is not indirectly dominated by
(D,D). We can therefore conclude that the LCS, LCCS, vNM FSS, and the RE solutions
concepts introduced by D&V (2017) and D&V (2020), in which progression in the abstract
game is along indirect dominating paths, consist of the cooperative and non-cooperative
strategy pairs, {(C,C),(D,D)}. Further, note that in the PD example, the utilities of each
of the two players in the four states are distinct. Then, since we do not consider non-
singleton coalitions, we can use Proposition 6 in Kimya (2020) to conclude that the SREFS
{(C,C),(D,D)} is also the stable set corresponding to the static ECB (and thus is a stable
set corresponding to the static CECB) of the farsighted PD game. Finally, we also note, via
the next result, that this is also the unique ESS for this example.

Lemma 4.1 The unique ESS for the PD game example is {(C,C),(D,D)}.

In contrast, as shown in Section 3, the unique SPCS for this game is {(C,C)}. Some intu-
ition for this stark difference may be gained by comparing, via the above table, the relative
strength of subgame-perfect-reachability, as compared to indirect-domination-reachability.
Specifically, as mentioned earlier, according to indirect-domination-reachability, the only
reachable states from an initial state are those states which indirectly dominate it. By con-
trast, in the SPCS, players are guided by subgame perfection, which allows them to reach
states, from some starting state, which are not necessarily indirectly dominating it. For
example, in the PD example, the state corresponding to (C,C) is subgame-perfect-reachable
from, e.g., the state corresponding (D,D), but it is not indirect-domination-reachable from
(D,D).

In fact, the drivers of and the intuition behind the proof of Theorem 3.1 are the strength
of the subgame-perfect-reachability relation and the consistency requirement satisfied by the
SPCS. Specifically, as demonstrated therein, the proof follows since (i) any state in the SPCS

of a farsighted normal form game is surely reachable from any state in Z, and (ii) off the
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equilibrium path, any deviation to some new state could lead, with positive probability, to
any state in the SPCS.

To summarize, in the farsighted PD example, LCS = LCCS = vINM FSS = REFS = ESS
= {(C,C), (D,D)}, and the SPCS = {(C,C)}. Thus, in the farsighted PD, being a SPCS
neither implies nor is implied by being any of the other farsighted solution concepts sets.

Next, consider Example 1.1°, represented by Figure 1.1 with the modified utility vectors
(3,3,0,0),(3,3,0,0),(0,0,3,0),(0,0,2,0) and (4,4,0,3). Now, the only indirect dominating
paths in Example 1.1’ are from State A to State E, and from State B to State E. Since
both Players 1 and 2 are strictly better off at State E than at State A and B, respectively,
States A and B are not contained in the LCS. That is, LCS = {D,E}. Similarly, we also
have LCCS = vNM FSS = {D,E}. Moreover, since according to the RE solution concepts,
progression dictated by the RE function is carried out only along indirect dominating paths,
these RE solution concepts also lead to {D,E}. However, according to the ESS (K&R
2021), progression in the abstract game, as dictated by the associated RE function F, is not
necessarily carried out along indirect dominating paths. Indeed, following the same logic
discussed in the context of Example 1.1, according to the ESS solution concept, Player 3,
given an opportunity to move at State C, prefers to move to State D, at which their utility
is reduced from 3 to 2, because if they choose not to move and let Player 4 move from State
C to State E, their utility will be zero. We note that at State D, Players 1 and 2 are strictly
worse off than at States A and B, respectively. Therefore, if Player 3 is the first to move at
State C, Players 1 and 2 will not move from A and B, respectively. If, however, Player 4 is
the first to move at State C, then she will move to State E, at which both Players 1 and 2
are strictly better off than at States A and B, respectively. We conclude that the ESS of
Example 1.17 are either {A,B,D,E} or {D,E}.

Next, let us consider the prediction of Kimya’s (2020) static solution concepts, (C)ECB,
for Example 1.1°. Again, we assume that payoffs are realized only at the final states. Consider
Case (i), where coalition behavior, ¢*, prescribes a move by Player 4 at State C, and moves
by Players 1 and 2 at States A and B, respectively. Then, as in Example 1.1, all three players
don’t have a profitable deviation from ¢'. Thus, ¢' is a (C)ECB, leading to a Stable Set
{D,E}. In Case (ii) consider the coalition behavior, ¢*, where Player 3 moves, and Players 1
and 2 do not move. As in Example 1.1, Player 3 does not have a credible deviation from ¢°.
Further, Players 1 and 2 do not have a profitable deviation from ¢?, leading to the Stable
Set {A,B,D,E}.

Let us consider the SPCS of Example 1.1°. Recall that if Player 3 is given an opportunity
to move at State C, they will prefer to move to State D. Further, if Player 4 is given an

opportunity to move at State C, they will elect to do so since they are better off at State E
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than at State C and at State D. Thus, according to the SPCS, there is a subgame perfect
equilibrium in which, moves from States A and B could end up at State D (and E). Since
both Players 1 and 2 are strictly worse off at State D, and strictly better off at State E,
than at States A and B, then, using, e.g., expected utility as the optimality criterion, for a
range of endogenously determined probabilities for which Player 3 is the first to be granted
the opportunity to move at State C, Players 1 and 2 would prefer not to move from States
A and B, respectively. For a different range of probabilities, Players 1 and 2 would prefer to
move from States A and B. Since these probabilities may be history dependent, the SPCS
is either {A,B,D,E}, {A,D,E}, {B,D,E} or {D,E}.

Summarizing, for Example 1.1°, we have LCS = LCCS = vNM FSS = RE solutions =
{D,E}, the ESS is either {A,B,D,E} or {D,E}, and SPCS is either {A,B,D,E}, {AD.E},
{B,D,E} or {D,E}. Thus, all farsighted solution sets are also a SPCS. In particular, all
farsighted solution concepts, except for the ESS and the SPCS, fail to identify the farsighted
optimal behavior of Player 3 at State C', and predict a move from States A and B.

We conclude by another type of possible comparison between solution concepts. Say that
solution concept A is weakly included in solution concept B if for any game, the union of all
solution-A sets is a subset of the union of all solution-B sets. Accordingly, in the farsighted
PD, any of the other farsighted solution concepts is not weakly included in the SPCS, while
in Example 1.1°, the SPCS is not weakly included in any of the other farsighted solution

concepts. We conclude:

Corollary 4.1 The following non-inclusion results hold: (i) Being a SPCS neither implies
nor is implied by being any of the other farsighted solution concepts sets, LCS, LCCS, vNM
FSS, REFS, SREFS, HREFS, HSREFS, ESS and (C)ECB.

(ii) The SPCS neither weakly includes nor is weakly included in any of the other farsighted
solution concepts, LCS, LCCS, vNM FSS, REFS, SREFS, HREFS, HSREFS, ESS and
(C)ECB.

5 Summary

In this paper we introduce a new approach to farsightedness, embodied in the SPCS. The
SPCS retains a main feature of several existing farsighted solution concepts, such as the
LCS, LCCS, vNM FSS, and the more recently introduced solution concepts by D&V (2017),
D&V (2020), and K&R(2021), namely a vNM type of consistency. However, as it relies on
subgame perfection, the problem of maximality, raised by Ray and Vohra (2015a, 2019), is

not present therein. Coalitions are employing best response choices and share the same beliefs
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on coalitional moves at each state. Further, according to the SPCS, all reachable stable states
after a move from a current state are considered, and the attractiveness of such a move is
determined by using preferences respecting first order stochastic dominance over the utilities
of the reachable states. Thus, the SPCS incorporates inherent uncertainties in the model
and as such, it extends the farsighted reasoning beyond the confidence assumption, which
is integral in the solution concepts based on a rational expectation function (or coalition
behavior) approach, recently introduced by D&V (2017), D&V (2020), K&R (2021) and
Kimya (2020).

We prove that whenever the set of states, Z, is finite, there exists a SPCS", and we further
prove that the SPCS/SPCS" leads, e.g., to (weak) Pareto efficiency, without coalitions, in
any normal form game having a myopic equilibrium. This result is shown to imply that
farsighted players who adopt the SPCS/SPCS" reasoning will achieve full cooperation and
overcome misaligned incentives in a variety of settings. Specifically, our farsighted players will
always share the monopolistic profit in farsighted settings based on Bertrand and Cournot
competition, and will always achieve supply chain coordination and Pareto efficiency in a
decentralized setting of the classical newsvendor model and its variants. Finally, modeling
network formation as 1-farsighted normal form game, we show, similar to, e.g., Kimya (2020)
and Luo et al. (2021), that the SPCS/SPCS" is able to mollify the tension between stability

and efficiency in network formation.

Appendix: Proofs

Proof of Proposition 2.1.  The definition of ¥, implies that it is non-empty since
the strategy profile ¢ € 3, following h, generates a probability measure having support
consisting only of infinite converging histories. Therefore, by definition 2.1, a SPCS or
SPCS" is necessarily non-empty. Any terminal state is necessarily in any SPCS or SPCS’,
as no coalition can alter a terminal state when it is selected as an initial state. m

Proof of Theorem 2.1. Existence is established assuming that preferences for any
coalition S are represented by the expectation of a coalition utility function ug that is a con-
tinuous and monotonic aggregation of the utility functions u; for all i € S from final states,
e.g. the expected sum of coalition member utilities from final states. We start by showing
that R*(z) # 0 for any state z € Z. Let m = min;ey ez ui(2) — 1 be a strict lower bound
for the utility of any player in any state. Following Flesch et al. (2010), define an auxiliary
game G in the class GT of positive recursive stochastic games with complete information as
follows: their non-empty and finite set of players IV is our set of all non-empty coalitions;

their non-empty and finite set of states S is ZU Z’, where their set of non-absorbing states is
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our set of states Z, and their set of absorbing states is Z’, a duplicate of Z having as member
one state 2’ for each and every state z € Z; for each state t € S, their associated controlling
player i; is some arbitrary non-empty coalition S, in our game that has the effectiveness
to move at the state z associated with ¢, or some arbitrary non-empty coalition S, if no
coalition has the effectiveness to move at z; for each state t € S, their associated non-empty
and finite set of actions A; is {#' € Z'}U{2" € Z | = —g. 2"} consisting of the ‘absorb/stay’
action 2’ € Z’ corresponding to z, together with our set of states z” to which coalition S, has
the effectiveness to move from the state z associated with t; for each pair of states t,u € S
and action a € A;, their transition probability is deterministic, i.e. the transition probability
given action a from state z € Z to state 2z’ € Z U Z" associated with t,u, respectively, is
p.(a,2") = 1 for 2” = a and 0 otherwise; for each player i € N, state ¢ € S and action
a € Ay, their payoff ri(a) for every non-absorbing state ¢ is 0, and for every absorbing state
t equals ug(z) = Fs[(uj(z) — m)jes| for the coalition S associated with i and the state
z € Z corresponding to the 2z € Z' associated with ¢, where F : Ri — R is a continuous
and monotonic function; their initial state s € S is some initial state z € Z in our game.
Since all transitions in G are deterministic, by the Main Theorem of Flesch et al. (2010),
G has a subgame perfect equilibrium in pure strategies. This subgame perfect equilibrium
is absorbing, i.e. absorption occurs eventually with probability 1. Since all transitions are
deterministic and the strategies are pure, the subgame perfect equilibrium involves a unique
absorbing state corresponding to a state Z € Z. Since any pure strategy best response for a
player in GG following any history implies in our game the corresponding pure strategy best
response under the corresponding preferences for the corresponding coalition following the
corresponding history, the strategy profile o (with deterministic protocol o.) corresponding
to the subgame perfect equilibrium in G is a subgame perfect equilibrium in our game, and
supports sure reachability from z to z. Therefore, R*(z) # () for any state z € Z. Note that
any state z € R*(z) for any z is by definition surely reachable from itself, i.e. Z € R*(z).

Next, define the set X inductively: Let X° = Y% = ; for k = 1,2,...,|Z|, define the sets
XF Y* as follows: if there exists a non-empty subset W* of Z \ Y*~! that is strongly con-
nected according to the relation R* (i.e., any two states z, 2 € W* are connected by a path of
sure reachability, so that each state is surely reachable from its predecessor along the path)
and no state z € Z\ (Y*1UW*) is in R*(2) for some 2 € W*, then let Y* = Y*"1UWP; ad-
ditionally, define a set V¥ C W¥ inductively: start with V*° = W*, end with V* = Vk’|Wk‘,
and for [ = 1,2,... |[WFk| let V¥ = VRIZIN\ 2R if there exists 2 € VFI~! and a coali-
tion S with the effectiveness to move at z*! and a state z for which z*' —g¢ Z such that
all 2 € (X*1uVk-1) N R*(2) are weakly better for S than z*! with at least one being
strictly better, otherwise let V*! = V*!=1. then let X* = X*~1 U V*; in any other case, let
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Y =Yk 1 and X* = X* 1 finally, let Y = Y14l and X = X4,

By construction, each k, V¥ and z € W* satisfy the following two conditions, namely, con-
dition (I): z € V¥ if either no coalition has the effectiveness to move at z or there exists a
coalition 5% that has the effectiveness to move at z and for any state z for which z —g- 2
there exists 2 € (X¥~1UV*) N R*(2) strictly worse for S* than z, and condition (II): z ¢ V*
if there exists a coalition S* with the effectiveness to move at z and a state z for which
2z —g- z such that all 2 € (X*"1UV*)N R*(2) are weakly better for S* than z with at least
one being strictly better. Additionally, any state in Y is surely reachable from itself, while
this does not hold for any state in Z \ Y. Observe also that X N R*(z) # () for any state
z € Z. To see this, note that (i) z € X implies z € R*(2); (ii) for z € Y \ X, condition (I)
implies that for any coalition S* that has the effectiveness to move at z and any state z for
which 2z —g- z, any 2 € (X* 1 UV*) N R*(2) is weakly better for S* than z; and (iii) for
z€ Z\Y, XN R*(z) # 0 is supported by a strategy profile o constructed with protocol o,
always selecting for sure some single non-empty coalition that has the effectiveness to move
from z, and applying backwards induction to extend the continuation strategy profiles that
support the sure reachability of some state in X N R*(Z) from each z € Y.

X according to the following four specifications, and we will subsequently show

Now, define o*
that it supports X, constructed above, as a SPCS:

Specification (1): after any history h = (2!, St 21,52, ... 2!, S%) such that 2! € R*(z!) and
{S'}t_, D 2N\ 0, i.e. with no moves by all non-empty coalitions from some initial state
2! surely reachable from itself, let 0** continue according to some subgame perfect equilib-
rium o supporting this sure reachability, i.e., for all A’ that are continuation histories of h,
X (W) = ag(h') for all coalitions S with P(h') = S and o7*(h') = o.(h') when P(h') = c.
Specification (2): after any history h = (2!, S', 21,52, ..., 2%, S'71 21) such that {S'}!_] ?
2N\ 0, i.e. with no moves by some, but not all, non-empty coalitions from some initial state
21, let the protocol o*¥(h) at this history have in its support only some arbitrary single
coalition S* that, when 2! € Y, satisfies the if statement in either condition (I) or (II) for
2% in the role of z and some k, or, when the if statements in both conditions are violated or
when 2! € Z\ Y, just has the effectiveness to move at z! if one exists, or any 52" otherwise.
Specification (3): after any history h = (2,591, 21,52%,... 21, S 2?) such that {S'}/_] 2
2N\ 0 and 2! # 22, i.e. with no moves from some initial state 2! by some, but not all,
non-empty coalitions, followed by a single, initial move by some coalition S* to some other
state 22, consider some finite collection C(z!, S, 2?) of subgame perfect equilibria o of a
subgame in which 2?2 is the initial state such that o.(z?) # 0, i.e. the first selected coalition
in this subgame according to each o € C(z!, S, 2?) is non-empty, and where C(z!, S, 2?)

satisfies that z € X N R*(2?) if and only if there is a corresponding subgame perfect equi-
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librium 0% € C(z!, 5% 2%) having 2 as the sure final state; let the protocol o*%(h') at any
history h' = (21,81, 21,5%, ... 21, 51,220, 2%,...,0,2?), possibly with () occurring 7 = 0
times, have for S"*7*! the support {#} U [Uyzec(z1,5.2)0%(2%)], i.e. includes only the empty
coalition and the first selected non-empty coalition in each 0% € C(z', S, 2?); following any
history (21, S, 2%, 52, ..., 24, St 220,22, ..., 0, 22, ST with ST £ ), let o*X continue
according to each 0% € C(z', 5%, 2?), the identity of which is determined by the identity of
ST+l and, in case two distinct 0 have the same first selected coalition, arbitrarily by 7,
namely half the history length following 22 until S**7+!, and if S*"*! is different from the
first selected coalition of any 0 € C(z!,S?, 22) then o*X continues according to an arbitrary
o® € C(z, S, 2%) following the selection of S™7+1; more specifically regarding the protocol
o*X(h'), let it assign probabilities to generate a distribution over o, thus a distribution
d(z%) = dyx), over final states z, so that, (i) whenever z* € V¥ for some k and S* = 5%
was used to justify this, the generated distribution d(2?) over final states following h makes
S*" weakly prefer 2! over d(z%) (this is possible either due to the existence in condition (I)
of states in (X* 1UV*) N R*(2?) strictly worse for S than z', with these final states being
realized with sufficiently high probability and by preference continuity, or due to indiffer-
ences when the if statements in both conditions (I) and (IT) are violated for 2! in the role
of z), and (ii) whenever z' € W*\ V* for some k and S* = S* was used to justify this, the
generated distribution d(22) over final states following h makes S* weakly prefer d(z?) over
2! (this is possible either due to the existence condition (II) of states in (X*~1UV*)N R*(2?)
weakly better for 5" than 2! with at least one being strictly better, with these final states
being realized with sufficiently high probability and by preference continuity, or due to in-
differences when the if statements in both conditions (I) and (II) are violated for z!' in the
role of z).

Specification (4): after any history h = (2!, 8%, 21,52, ..., 21, S*) such that {S'}/_] 2 2N\ 0,
i.e. with no moves from some initial state z* by some, but not all, non-empty coalitions, fol-

X" as specified

lowed by the selection of some coalition S?, taking as given the continuation o*
in Specification (3), coalition S* acts optimally on and off play path when choosing whether
or not to move from z! to some 22

Note that o*X is composed of subgame perfect equilibria following any history as in Spec-
ifications (1)-(3), and since each coalition only cares about final states, also following any
history as in Specification (4). Consequently, o*¥ is a subgame perfect equilibrium. Further-
more, Specification (1) ensures that o*X satisfies the sure reachability z € R*(z) according
to requirement (a) in Definition 2.1. To see that it also satisfies the sure reachability for
states in X N R*(2?) according to requirement (b) and the stability of states in X according

to requirement (c), note that, (i) for any initial state z! € X since z! € V* for some k,
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coalition S that was used to justify this (and is selected for sure on play path) stays at 2!
because it weakly prefers 2!, which would be the final state for sure if S 2! stayed at z!, over
d(2?), for any z? for which 2! —.1 22 and X* N R*(2?) # 0, and because a move to z? for
which X* N R*(22) = ) (consequently (X \ X*) N R*(2?) # 0 since X N R*(2?) # 0) cannot
be optimal, as this would contradict (Z \ Y*) N R*(2!) = () as required by the construction
of Y*; (ii) for any initial state z' ¢ X such that z' € W*\ V* for some k, coalition S*' that
was used to justify this (and is selected for sure on play path) moves from z! to some 22
for which 2! — .1 22 and X* N R*(2?) # 0 because S* weakly prefers d(22) over z!, which
would be the final state for sure if S*' stayed at z!, and because, as above, a move to z? for
which X* N R*(2?) = () cannot be optimal, and (iii) some coalition S moves from any initial
state 2! ¢ X such that z! € Z\ Y because any such state is not surely reachable from itself.
Therefore X is a SPCS™ supported by ¢*X. =

The following notation is used in the proof of Theorems 3.1 and 3.2. For every two states
z,7" and coalition S, zg¢z' denotes the state z” € Z defined by 2! = z; for all i € S and
2! = 2! otherwise.

Proof of Theorem 3.1. Although we refer in the proof to SPCS with its reachability
R, the entire argument applies also to SPCS” with its reachability R*. We first prove (1).
Let X C Z be a SPCS, thus it is necessarily non-empty by Proposition 2.1, and consider
some subgame perfect equilibrium strategy profile % that supports X as a SPCS. We first
show that any state 22 € X is surely reachable from any state z! € Z. Fix such 2!, 22,

! is the initial state, let [ be the minimal

For any finite history h such that hg = 2%, ie., 2
even, positive number [ such that (22)p, , (ki) = 22, or let [ = 0 if such [ does not exist.
For the subgame in which 2! is selected as the initial state, consider the strategy profile ¢’
defined with full support protocol ¢’,, and defined for any finite history i such that hy = z*
and P(h) = S as follows: if —g= ) then o'y(h) = hg, 1; if —5# 0 and [ = 0 then let
o's(h) = (2*)s(hg,—1), otherwise let o’y(h) = &[22, (hk)kK:hlg_l]. In this subgame, according
to o', each coalition S, when selected to make a choice whether to keep the current state or
to move to a new state, moves by choosing the alternatives a; € A; corresponding to 22 for
each player ¢ € S and then does not move anymore, except after the first time a coalition
S’ was selected which could move from the current state z to 22, i.e., z; = 22 for all i ¢ ',
and in fact moved to z/, in which case the strategy profile o’ continues exactly as o~ does
following the selection of z? as an initial state and after an initial move by S’ from 22 to
2. Consequently the state 22 is the final state for sure according to ¢’ following 2! as the
initial state. It is also the final state for sure according to o* following the selection of 22
as an initial state, because in this case 0% dictates no moves — see the definition of a SPCS.

X

Moreover, since o is a subgame perfect equilibrium, no coalition strictly prefers to deviate
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from it after any history, in particular after a history in which all coalitions stayed at z2.
Additionally, no coalition strictly prefers to deviate from ¢’ after a history involving a partial
process of moves from z! to 22, because all other coalitions are dictated by o’ to move to 22,
and deviation alone of this coalition would lead to exactly the same weakly inferior distrib-

2 according to o*.

utions over final states as in the case of deviation of this coalition from z
Therefore o’ is also a subgame perfect equilibrium, proving the sure reachability of 22 from
z!. Since X C R(z') for any 2! € Z, it follows that X is a countable set, as requirement (b)
in Definition 2.1 of the SPCS implies that X = ¥ x,, where ¥, x|, is a countable set.

Now suppose that there are at least two distinct states in X and a player ¢ that is not indif-
ferent between them. Since a SPCS is compact and players’ utility functions are continuous,
there is a worst state Z € X for player i. Consider the history h = (2, {i}), i.e., Z is selected
as an initial state and player ¢ is selected to make a choice whether to keep Z or to move to
a new state. According to o, since ¥ € X and X is a SPCS, player i is supposed to keep 2,
anticipating it as the final state for sure — see the definition of a SPCS. But note that in case
of an initial move by player i, off the 0% equilibrium path, from # to a new state, by require-
ment (b) in Definition 2.1 of the SPCS, any final state must be in X, and, since all states
in X are reachable following a move away from Z, there is a positive probability that the
final state according to o~ will be strictly better than # for player i. Therefore, player i can
either choose 2 for sure, or alternatively, can choose a first order stochastically dominating
distribution, as Z is the worst state in X for i. Since the first order stochastically dominating
distribution is strictly preferred, the choice of player ¢ to keep 2 violates the assumption that
0% is a subgame perfect equilibrium. Since this argument holds for any subgame perfect
equilibrium strategy profile 0%, we derived a contradiction to the assumption that X is a
SPCS. Therefore, since X is non-empty, it must consist of states that are all equivalent for
all players, i.e. X ~ {z*} for some z* € Z.

Suppose now that z* is not Pareto efficient. Then there exists d € Z\X such that w;(d) >
u;(2*) for each ¢ € N. We first show that d is surely reachable from itself. For the subgame
in which d is selected as the initial state, consider the strategy profile ¢’ defined with full
support protocol o’,, and such that o%s(h) = d for any coalition S and any finite history
h = (d,S',d,S?%...,d,S), and o'g(h) = oa(h) for any other history h. In this subgame,
according to o', each coalition S stays at d, except when some coalition has previously not
done so, in which case the strategy profile o’ continues exactly as 0% does. Therefore o’
leads on equilibrium path to the final state d for sure. Moreover, ¢’ inherits its subgame
perfection from ¢~ after any history in this subgame with some move away from d, and it is
also subgame perfect following a history with no previous such moves because requirement

(b) in Definition 2.1 of the SPCS applied to 0 implies that an initial move away from d
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will lead for sure to a final state equivalent to z*, which is strictly worse than d for any
coalition. Therefore d is reachable from itself. Furthermore, applying the same argument to
o, any coalition anticipates that coalitions selected later to make a choice can either stay
at d, which, by requirement (a) in Definition 2.1 of the SPCS and since d is reachable from
itself, would lead to d as the final state for sure, or to make an initial move away from d,
which, by requirement (b) of the SPCS, would lead for sure to a final state equivalent to the
strictly worse z*. Therefore, no coalition will move away from d after it was selected as an
initial state, contradicting the definition of a SPCS because d ¢ X. Thus z* must be Pareto
efficient.

Next we prove (2). Suppose that X ~ {z*} for some Pareto efficient z* € Z such that
u;i(z*) > wu;(e) for some myopic equilibrium e € Z and all i € N. Index X with {zt}‘t):q1
For any finite history h, let {9 be the minimal even, positive number [ such that h;_; # 0
and there exists an even, positive number I’ < [ such that hy # hg, or let [9 = 0 if such [
does not exist; let ¢, =1+ %l% mod |X|; let [} = 1 if there exists an even, positive number
I > 19 such that (h;); # 2 for i € hy_; and —y, ,# 0, otherwise let [} = 0. Consider
the strategy profile 0% defined with full support protocol o following any finite history h
such that P(h) = ¢, and defined for any finite history h such that P(h) = S as follows: if
—s= ) then o3 (h) = hg, 1, otherwise: (a) if hy € X then (al) oa (h) = ho when [ = 0,
and (a2) 0% (h) = (2™)s(hg,—1) when [ > 0 and I} = 0, and (a3) o3 (h) = es(hk, 1)
when [} = 1; and (b) if hy ¢ X then (bl) o&(h) = hg when ) = 0, hg € R(hg) and
{1, x, 2 {S C N |—s# 0}, otherwise (b2) o (h) = (2')s(hg,—1) when [}, = 0, and
(03) 0% (h) = es(hg, 1) when [} = 1. According to o, if an initial state in X is selected or
if all effective coalitions were selected and none moved from an initial state reachable from
itself, then no coalition moves and this is the final state for sure; otherwise, if an initial
move is made away from an initial state in X, or if all previously selected coalitions stayed
at an initial state not in X, then each z'» € X, the identity of which is determined by the
realization of the history length until the first selection of a non-empty coalition following
the initial move, becomes a final state by each coalition moving by choosing the alternative
corresponding to z™ and then not moving anymore; after any deviation from the above, each
coalition moves to the alternative corresponding to e and then does not move anymore. This
strategy profile clearly satisfies both requirements (a) and (b) in Definition 2.1 (note that
since X is countable, there is no problem with the condition ¥,x, = X N R(2?)) and also
requirement (c). We now verify that it forms a subgame perfect equilibrium. First note that
on equilibrium path, whether or not the initial state is in X, any final state is equivalent for
all players to z*, and this holds also after an initial move away from an initial state in X.

Any deviation after an initial move leads to the final state e for sure, and since u;(z*) > wu;(e)
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for all + € N, no coalition prefers to deviate from the equilibrium path, leading indeed to
a final state in X. Moreover, after choices by all effective coalitions to stay off equilibrium
path at an initial state reachable from itself, it becomes the final state for sure, supported in
equilibrium by its own reachability. Similarly, e is reachable from itself because it is a myopic
equilibrium, thus when reaching e off equilibrium path, no coalition prefers to deviate, as
this can only lead to a final state at most as good as e. Consequently the strategy profile is
a subgame perfect equilibrium. m

Proof of Theorem 3.2. Although we refer in the proof to SPCS with its reachability
R, the entire argument applies also to SPCS™ with its reachability R*. Suppose first that
X C Z is a SPCS supported by oX. By Proposition 2.1, X is non-empty. Suppose that
u;i(2') < u¥ for some 2z’ € X and some player i € N. Consider the case where 2’ is selected
as an initial state and player ¢ is selected to make a choice whether to keep 2z’ or to move
to a new state. Since 2/ € X, by the definition of a SPCS, ¢¥ dictates that player i will
keep 2/, anticipating it as a final state. But this player could instead adopt a strategy 7 in

which he always changes the current state whenever such an opportunity arises, thus forcing

w
7

a swinging final state, as the game is generic. Since the utility, u{, of a swinging final state
is strictly higher than wu;(2’), the choice of player i to keep 2’ violates the subgame perfect
equilibrium, a contradiction. Therefore u;(2') > u? for all z € X and i € N. We can now
use an argument similar to the one used in the proof of Theorem 3.1, modified only in the
part proving uniqueness up to equivalence for all players, which would instead conclude that
XNZ = {z*}. Then using the remaining argument concerning Pareto efficiency, swinging can
be eliminated from X when it is not Pareto efficient. Therefore we conclude that X = {z*}
for some Pareto efficient 2* € Z such that u;(z*) > u? for all i € N.

For the other direction, suppose that X = {z*} for some Pareto efficient z* € Z such that
ui(z*) > uy for all i € N. We use an argument similar to the one used to prove (2) in
Theorem 3.1. For any finite history £, let [9 be the minimal even, positive number [ such
that h;_; # () and there exists an even, positive number I’ < [ such that hy # hg, or let
19 = 0 if such [ does not exist; let I} = 1 if there exists an even, positive number [ > [
such that (h;); # 2} for i € hy_; and —,, ,# 0, otherwise let [} = 0. Consider the strategy
profile 0% defined with full support protocol o following any finite history h such that
P(h) = ¢, and defined for any finite history h such that P(h) = S as follows: if —g= ()
then o3 (h) = hg, 1, otherwise: (a) if hy € X N Z then (al) o3 (h) = ho when [{ = 0, and
(a2) 0¥ (h) = (2*)s(hxk,—1) when [} > 0, I} =0 and 2* # w, and (a3) o2 (h) = z5(hx, 1)
when [} = 1 or z* = w, for some z € Z such that z5(hk, 1) # hx,_1; and (b) if hg & X
then (b1) o0& (h) = ho when I =0, hg € R(ho) N Z and {h;}1=13.. x, 2 {S C N |—s# 0},
otherwise (b2) o0& (h) = (2*)s(hk, 1) when [} =0 and z* # w, and (b3) o2& (h) = 25(hr, 1)
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when [} =1 or 2* = w, for some 2z € Z such that zg(hg, 1) # hx, 1. According to o™,

if an initial state in X N Z is selected or if all effective coalitions were selected and none
moved from an initial state reachable from itself, then no coalition moves and this is the final
state for sure; otherwise, if an initial move is made away from an initial state in X N Z, or
if all previously selected coalitions stayed at an initial state not in X N Z, then z* becomes
the final state for sure by each coalition moving by choosing the alternatives corresponding
to z* and then not moving anymore, or by keep changing the current state whenever it is
selected to make a choice in the case of swinging; after any deviation from the above, each
coalition conducts a swinging behavior. This strategy profile clearly satisfies both properties
(a)-(¢) in Definition 2.1. We now verify that it forms a subgame perfect equilibrium. First
note that on equilibrium path, whether or not z* is the initial state, z* is the final state for
sure, and this is also the final state for sure after an initial move away from the initial state
z*. Any deviation after an initial move leads to a swinging final state, in which case each
player has utility u}’, as the game is generic, and since u;(z*) > u¥ for all i € N, no coalition
prefers to deviate from the equilibrium path, leading indeed to the final state z* for sure.
Moreover, after choices by all effective coalitions to stay off equilibrium path at an initial
state reachable from itself, it becomes the final state for sure, supported in equilibrium by
its own reachability. Similarly, a swinging final state is reachable from itself because it is
forced by the other coalitions when they are selected to make a choice. Consequently the
strategy profile is a subgame perfect equilibrium. m

Proof of Lemma 4.1. Recall that a rational extended expectation function REEF,
denoted F' = (F'(2),..., F*¥®)(2)), where FI(z) = (f(2),57(2)), 7 = 1,...,k(z), S¥&) =
0, f**)(2) = z, is required to satisfy Conditions (I), (E), and (M). Now, for the PD
game, we first show that {(C,C), (D,D)} is an ESS by the following REEF F: F(C,D) =
[(D,D),{1}), ((C,D),0)], F(D,C) = [((D,D),{2}),((D,C),0)], F(C,C) = [((C,C),)] and
F(D,D) = [((D,D), 0)]. To see this, consider each z € Z, starting from z = (C,D). Condition
I is satisfied since for coalition 7' = {2} ¢ {{1},0}, necessarily y = (C,C) with z —y y
and i = 2 € T, and | = k(z) = 2, we have that u;(f!(2),F) = 4 > 3 = u;(y, F). Con-
dition E is satisfied since u;(f*(C,D),F) = 1 > 0 = u;(f*(C,D), F'), and Condition M is
satsified vacuously since there is no y € Z with y # f'(2) and z —g1(,) y. Similarly, Con-
ditions (I),(E) and (M) are satisfied for z = (D,C). Now consider z = (D,D). Condition
(I) is satisfied since for coalition T' = {1} ¢ {0}, necessarily y = (C,D) with z —;; y and
i=1€T,and | = k(z) = 1, we have that u;(f!(2),F) = 1 > 1 = u;(y, F), and simi-
larly for coalition 7" = {2}. Conditions (E) and (M) are satisified vacuously for z = (D,D).
Finally, for z = (C,C), Condition (I) is satisfied since for coalition " = {1} ¢ {0}, nec-
essarily y = (D,C) with 2 —3 yand i = 1 € T, and | = k(z) = 1, we have that
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u;(fY(2), F) =3 > 1 = u,(y, F), similarly for coalition T" = {2}, and Conditions (E) and (M)
are satisfied vacuously. Note that I is the unique REEF supporting {(C,C), (D,D)} as an
ESS. To see this, suppose that F(C,D) = [((C,C),{2}), ((D,D),{1}), ((C,D),0)]. Then, for
z=(D,D), T = {1} ¢ {0}, f'(2) = z, necessarily y = (C,D) with z —g; yandi=1€ T, we
have w;(f'(2), F) =1 # 3 = u;(y, F), which contradicts Condition (I). Any other possibility
for F'(C,D) involves coalition {1, 2}, but since this coalition does not have any effectiveness
to move in this game, any such possibility violates Condition (E) at State (C,D). Similar
reasoning apply for State (D,C).

Next we show {(C,C), (D,D)} is the unique ESS. To this end, consider any other ESS.
For each of the following mutually exclusive and exhaustive cases for this ESS we show a
contradiction, which implies that no other ESS exists.

Case 1: State (D,D) is in the ESS, i.e. it is stationary according to F. Then State
z = (C,D) is not in the ESS, since otherwise it is stationary and for k(z) =1 =1, S'(z) = 0,
T = {1} ¢ {S'(2)}, f'(z) = z and necessarily y = (D,D) with z —yy yandi =1 € T, we
have u;(f'(z), F) = 0 # 1 = w;(y, F'), which contradicts Condition (I). Therefore k(z) > 1,
and for | = k(z) — 1 it must be that f!(z) = (D,D) and S'(z) = {1}, which is the only
way to satisfy Condition (E) by w;(f'(2),F) = 1 > 0 = w;(f'(2), F) for all i € S'(2).
Similarly, (D,C) is not in the ESS and k(D,C) > 1. Then, State z = (C,C) is stationary,
since otherwise (D,D) is the unique stationary state and for [ = k(z) — 1 it must be that
ui(fU(2), F) =1 # 3 = u;(f(2), F) for i € S'(2), which contradicts Condition (E). Since
the considered ESS was assumed different from {(C,C), (D,D)}, this is a contradiction.

Case 2: State (D,D) is not in the ESS, and State (C,C) is in the ESS. Then, State (C,D)
is not in the ESS, since otherwise for z = (C,C), T = {2} ¢ {0}, f'(z) = z, necessarily
y = (CD) with z — y and ¢ = 2 € T, we have w;(f'(z), F) = 3 # 4 = u(y, F), which
contradicts Condition (I). Similarly, State (D,C) is not in the ESS. Since (C,C) is the unique
stationary state, for = = (C,D), | = k(z) — 1, f!(z) = (D,D) and S'(2) = {1} we have
w1 (fY(2), F) =3 > 0=wu (f'(2), F) in order to satisfy Condition (E). But then, for [ = 1
we necessarily have f!(z) = (C,C), S(z) = {2} and ui(f!(2), F) = 3 # 3 = us (f'(2), F),
which contradicts Condition (E).

Case 3: Neither (D,D) nor (C,C) is in the ESS. By Corollary 4.1 in K&R (2021), the
ESS must be non-empty. If both (C,D) and (D,C) are in the ESS alone then for z = (D,D)
and | = k(z) — 1 we have u;(f!(2),F) = 0 # 1 = u;(f'"(2),F) for i € S'(z), which
contradicts Condition (E). If (C,D) is the unique state in the ESS then we must have that
F(D,D) = [((D,C),{2}), ((D,D),0)] so that us(f'(2),F) =4 > 1 = uy(f*(2), F) in order to
satisfy Condition (E). However, for 2 = (D,C) and [ = k(z) — 1 necessarily f!(z) = (C,C),
Sl(z) = {1} and ui(fY(2),F) = 0 # 4 = uy(f'*1(2), F), which contradicts Condition (E).
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Similarly, (D,C) cannot be the unique state in the ESS.
u

References

Bala, V., S. Goyal. 2000. A noncooperative model of network formation. Econometrica,
68(5), 1181-1229.

Bloch, F., A. van den Nouweland. 2020. Farsighted stability with heterogeneous expecta-

tions, Games and Economic Behavior, 121, 32-54.

Bloch, F.; A. van den Nouweland. 2021. Myopic and farsighted stable sets in 2-player

strategic-form games. Games and Economic Behavior, 130, 663-683.
Brams, S.J. 1994. Theory of Moves. Cambridge University Press, New York, NY.

Brams, S.J., D. Wittman. 1981. Nonmyopic Equilibria in 2x2 Games. Conflict Management
and Peace Science, 6, 39-62.

Cachon, G.P., M.A. Lariviere. 2005. Supply Chain Coordination with Revenue-Sharing
Contracts: Strengths and Limitations, Management Science, 51 (1), 30-44.

Cai, X., M. Kimya. 2023. Stability of Alliance Networks. Games and Economic Behavior,
140, 401-409.

Chamberlin, E.H. 1933. The theory of monopolistic competition. Harvard University Press,
Cambridge, MA.

Chwe, M.S-Y. 1994. Farsighted Coalitional Stability. Journal of Economic Theory, 63,
299-325.

Diamantoudi, E., L. Xue. 2003. Farsighted Stability in Hedonic Games. Social Choice and
Welfare, 21(1), 39-61.

Dutta, B., S. Ghosal, D. Ray. 2005. Farsighted network formation. Journal of Economic
Theory, 122(2), 143-164.

Dutta, B., H. Vartiainen. 2020. Coalition formation and history dependence. Theoretical
Economics, 15(1), 159-197.

Dutta, B., R. Vohra. 2017. Rational expectations and farsighted stability. Theoretical
Economics, 12(3), 1191-1227.

47



Flesch, J., J. Kuipers, G. Schoenmakers, K. Vrieze. 2010. Subgame Perfection in Posi-
tive Recursive Games with Perfect Information. Mathematics of Operations Research,
35(1), 193-207.

Granot, D., G. Sosi¢. 2005. Formation of Alliances in Internet Based Supply Exchanges.
Management Science 51 (1), 92-105.

Granot, D., S. Yin. 2008. Competition and Cooperation in Decentralized Push and Pull
Assembly Systems. Management Science, 54 (4), 733-747.

Greenberg, J.H. 1990. The Theory of Social Situations. Cambridge University Press, New
York, NY.

Harsanyi, J.C. 1974. An Equilibrium-Point Interpretation of Stable Sets and a Proposed
Alternative Definition. Management Science, 20 (11), 1472-1495.

Herings, P.J.J., A. Mauleon, V. Vannetelbosch. 2004. Rationalizability for social environ-
ments. Games and Economic Behavior, 49(1), 135-156.

Herings, P.J.J., A. Mauleon, V. Vannetelbosch. 2009. Farsightedly stable networks. Games
and Economic Behavior, 67(2), 526-541.

Hirai, T., N. Watanabe, S. Muto. 2019. Farsighted stability in patent licensing: An abstract

game approach. Games and Economic Behavior, 118, 141-160.
Jackson, M.O. 2010. Social and economic networks. Princeton university press.

Jackson, M.O., A. Wolinsky. 1996. A strategic model of social and economic networks.

Journal of economic theory, 71(1), 44-74.
Jordan, J.S. 2006. Pillage and property. Journal of economic theory, 131(1), 26-44.

Karos, D., L. Robles. 2021. Full farsighted rationality. Games and Economic Behavior,
130, 409-424.

Kawasaki, R. 2015. Maximin, minimax, and von Neumann—Morgenstern farsighted stable

sets. Mathematical Social Sciences, 74, 8-12.

Kawasaki, R., S. Muto. 2009. Farsighted stability in provision of perfectly “Lumpy” public
goods. Mathematical Social Sciences, 58, 98-109.

Kilgour, D.M. 1984. Equilibria for far-sighted players. Theory and Decision, 16, 135-157.

48



Kimya, M. 2020. Equilibrium coalitional behavior. Theoretical Economics, 15(2), 669-714.

Konishi, H., D. Ray. 2003. Coalition formation as a dynamic process. Journal of Economic
Theory, 110, 1-41.

Krishnan, H., R.A. Winter. 2011. On the Role of Revenue-Sharing Contracts in Supply
Chains. Operations Research Letters, 39 (1), 28-31.

Luo, C., A. Mauleon, V. Vannetelbosch. 2021. Network formation with myopic and far-
sighted players. Economic Theory, 71(4), 1283-1317.

Mariotti, M. 1997. A Model of Agreements in Strategic Form Games. Journal of Economic
Theory, 74, 196-217.

Masuda, T., A. Suzuki, S. Muto. 2000. Farsighted von Neumann-Morgenstern Stability
Leads to Efficiency in Oligopoly Markets. Working paper.

Mauleon, A., V. Vannetelbosch. 2004. Farsightedness and Cautiousness in Coalition For-

mation Games with Positive Spillovers. Theory and Decision, 56, 291-324.

Mauleon, A., V. Vannetelbosch, W. Vergote. 2011. von Neumann—Morgenstern Farsight-
edly Stable Sets in Two-Sided Matching. Theoretical Economics 6, 499-521.

Muto, S. 1993. Alternating-move preplays and vINM stable sets in two person strategic
form games. Tilburg CentER working paper series 9371.

Nagarajan, M., Y. Bassok. 2008. A Bargaining Framework in Supply Chains: The Assem-
bly Problem. Management science, 54 (8), 1482-1496.

Nagarajan, M., G. Sosi¢. 2007. Stable Farsighted Coalitions in Competitive Markets.
Management Science, 53 (1), 29-45.

Nagarajan, M., G. Sosi¢c. 2009. Coalition Stability in Assembly Models. Operations Re-
search, 57 (1), 131-145.

Nakanishi, N. 2009. Noncooperative farsighted stable set in an n-player prisoners’ dilemma.
International Journal of Game Theory, 38(2), 249-261.

Osborne, M.J., A. Rubinstein. 1994. A Course in Game Theory. MIT Press, Cambridge,
MA.

Page, F.H., M.H. Wooders, S. Kamat. 2005. Networks and Farsighted Stability. Journal
of Economic Theory, 120, 257-269.

49



Page, F.H., M.H. Wooders. 2009. Strategic basins of attraction, the path dominance core,

and network formation games. Games and Economic Behavior, 66, 462—-487.

Pearce, D.G. 1984. Rationalizable strategic behavior and the problem of perfection. Econo-
metrica, 52 (4), 1029-1050.

Ray, D., R. Vohra. 2015a. Coalition formation. In Handbook of Game Theory, Vol. 4, ed.
H.P. Young and S. Zamir. Amsterdam: North-Holland, 239-326.

Ray, D., R. Vohra. 2015b. The farsighted stable set. Econometrica, 83(3), 977-1011.

Ray, D., R. Vohra. 2019. Maximality in the farsighted stable set. Econometrica, 87(5),
1763-1779.

Sosi¢, G. 2006. Transshipment of Inventories Among Retailers: Myopic vs. Farsighted
Stability. Management Science, 52 (10), 1493-1508.

Suzuki, A., S. Muto. 2005. Farsighted stability in an n-person prisoner’s dilemma. Inter-
national Journal of Game Theory, 33(3), 431-445.

Suzuki, A., S. Muto. 2006. Farsighted Behavior Leads to Efficiency in Duopoly Markets.
Annals of the International Society of Dynamic Games, 8(6), 379-395.

von Neumann, J., O. Morgenstern. 1944. Theory of Games and Economic Behavior. New
York: John Wiley and Sons.

Xue, L. 1998. Coalitional Stability under Perfect Foresight. Economic Theory, 11 (3),
603-627.

30



