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Abstract

Farsighted decision makers, who anticipate that their deviations from a given course

of action may lead to deviations by others, act di¤erently from myopic decision makers.

In this paper we propose a new farsighted approach to strategic interactions settings,

referred to as the Subgame Perfect Consistent Set (SPCS), based on consistency in the

spirit of the von Neumann Morgenstern solution and on subgame perfect equilibrium.

Rather than follow constructs such as indirect dominance, farsighted players according

to the SPCS adopt best responses, and unlike expectation function-based farsighted so-

lution concepts, the SPCS incorporates explicitly inherent uncertainties in the abstract

game model. We show the SPCS exists for any �nite game. Surprisingly, the SPCS is

shown to always lead to Pareto e¢ ciency in farsighted normal form games. This result

is demonstrated in various oligopolistic settings, and is shown to imply, for example,

that players who follow the SPCS reasoning are always able to share the monopolistic

pro�t in farsighted settings based on Bertrand and Cournot competition, and are al-

ways able to achieve coordination and Pareto e¢ ciency in decentralized supply chain

contracting and network formation, even when they cannot form coalitions.

Key Words: Dynamic games, normal form games, abstract games, farsighted stability,

vNM consistency, oligopolistic competition

1 Introduction

The introduction of farsighted game theoretic solution concepts was motivated by criticism

of �myopia� raised against both cooperative and noncooperative approaches (Chamberlin
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1933, Harsanyi 1974, Chwe 1994). In strategic settings, it is arguably better for decision

makers to conduct their actions based on farsighted considerations, and to learn how to be

farsighted. As compared to �myopic�players who follow the vNM solution, core, or Nash

equilibrium, farsighted players recognize that their own moves may induce multiple moves

by other players. Motivated by the shortcoming of myopic reasoning, a variety of farsighted

solutions were proposed, starting with Harsanyi (1974). He pioneered the approach that

coalitional behavior should be analyzed using subgame perfect equilibrium strategies of an

extensive form game, with the aim of providing a non-cooperative foundation to the vNM

solution in cooperative game theory.

In view of the �myopia�of the vNM solution, Harsanyi (1974) has further suggested the

need to replace therein direct dominance with indirect dominance. Indeed, in the Largest

Consistent set (LCS) introduced by Chwe (1994) for abstract games, farsightedness is em-

bodied by indirect dominance.1 Chwe (1994) proved that the LCS exists, and that the vNM

solution for abstract games, wherein the direct dominance relation is replaced by indirect

dominance and referred to as vNM farsighted stable set (vNM FSS), is contained in the LCS.

The vNM FSS is criticized for assuming optimism on the part of the moving coalition. On the

other hand, the LCS is criticized for assuming pessimism on the part of a potentially moving

coalition (Ray and Vohra 2015a), and that, as a result, it could be too inclusive and may

contain non-intuitive outcomes. Its conservative criterion for a move is somewhat molli�ed

in the Largest Cautious Consistent Set (LCCS) introduced by Mauleon and Vannetelbosch

(M&V, 2004).

The farsighted approach for coalitional games, derived from the classical vNM solution

wherein indirect dominance replaces direct dominance, is referred to as the Harsanyi set. It

was re�ned to address issues such as lack of �coalitional sovereignty�(Ray and Vohra 2015b),

and lack of maximality in the sense of choosing better rather than best moves (Ray and Vohra

2015a, 2019). The latter has led more recently to the development of more satisfactory, due

to their maximality property, farsighted solution concepts for abstract games, by relying on

Rational Expectations (RE) in the sense of commonly held, endogenously determined beliefs

about the continuation path following any coalition move, see, Dutta and Vohra (D&V,

2017), Dutta and Vartiainen (D&V, 2020), Kimya (2020) and Karos and Robles (K&R,

2021). These solution concepts also satisfy variants of internal and external stability in the

spirit of those embodied in the vNM solution.

The RE approach relies on a deterministic expectation function. As such, it identi�es,

with certainty, the moving coalition, if any, at each state and the resulting new state. Any

moving coalition knows with certainty the �nal outcome it would reach following its move

1For a de�nition of an abstract game and indirect dominance see Sections 2 and 4, respectively.
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or stay at the current state. Thus, the RE approach does not incorporate inherent uncer-

tainties in the corresponding abstract game model. Indeed, in some sense, the underlying

abstract game in this approach di¤ers from Chwe�s original abstract game model, wherein,

for example, it is implicitly assumed that the identity of the moving coalition at each state

is generated by some unspeci�ed and uncertain mechanism. In fact, we note that while the

LCS, LCCS, or vNM FSS are criticized for employing non-optimal criteria for moves, we

demonstrate in this paper that the failure of the RE approach to incorporate the inherent

uncertainty as to the identity of the moving coalition may also lead to the prescription of

non-optimal moves. For example, the RE approach allows that coalitions stay at a state

z, even though the inherent uncerainty following a move therefrom would generate a set of

�nal outcomes, each of which being at least as good as the outcome at state z, and some

of which strictly better for all members of the moving coalition. Or the RE approach may

suggest moves by coalitions from a state z, when the inherent uncertainty following that

move generates a set of �nal outcomes, each of which being at most as good as the outcome

at z, and some of which strictly worse for all members of the moving coalition.

Relatedly, a necessary implication of the RE approach is what we call the con�dence

assumption: only states predicted with certainty by the expectation function are considered

by potentially moving coalitions from an initial state. This may be viewed as not fully

incorporating the spirit of vNM stability, as both internal and external stability of the vNM

solution, when testing an outcome with respect to a given stable set, do not exclude from

consideration any outcome in the stable set.2 One would therefore like to see all farsightedly

stable outcomes being expected by potentially moving coalitions from an initial state.

In this paper we introduce a new farsighted solution concept for abstract games, referred

to as the Subgame Perfect Consistent Set (SPCS). It di¤ers from existing solution concepts in

the following three respects, each of which contributing to the extension of farsighted stability

beyond the con�dence assumption. First, the SPCS incorporates the inherent uncertainty

in the abstract game model as to the identity of the moving coalition by explicitly allowing

for multiple coaltions a¤ecting a move whenever possible. Second, players or coalitions

look arbitrarily far ahead when they consider the consequences of moving or staying at

the current state. From a given initial state, we model the (non-stationary) evolution of

play resulting from players or coalitions�moves as an extensive form game, in�nite in size.

Accordingly, the SPCS uses the reasoning of subgame perfection, which endows players

with unlimited farsightedness, instead of constrained farsighted constructs such as indirect

2Indeed, as noted by Dutta and Vohra (2017), their internal stability is weaker than the ordinary vNM
internal stability since it requires internal stability only with respect to those farsighted objections that are
consistent with the common expectation function. For the same reason, their external stability is stronger
than the ordinary vNM external stability.
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Figure 1.1: Transition tree in Example 1.1

dominance which could lead to non-optimal moves. Third and �nally, we de�ne the SPCS

to consist of all states which can be supported as stable by a subgame perfect equilibrium,

re�ned to additionally satisfy both internal and external consistency in the spirit of the vNM

solution, whereby all stable states that are reachable by some continuation subgame perfect

equilibrium are expected by potentially moving coalitions from an initial state. Importantly,

the consideration of all reachable stable states, and not only a unique stable state reachable

via indirect domination or the unique outcome determined with certainty either in the RE

approach or Kimya�s coalitional behavior, is intended to extend the reasoning beyond the

con�dence assumption.

To motivate our solution concept, we consider a modi�cation of Example 2 (Figure 3) in

D&V (2017). Though formal de�nitions of the various farsighted solution concepts will be

given only in Sections 2 and 4, the example is simple enough to explain the motivation for

the introduction of the SPCS in view of some shortcomings of existing farsighted solution

concepts.

Example 1.1 Consider the four player abstract game associated with Figure 1.1 that has
�ve states with possible transitions between states as illustrated in the �gure. Speci�cally, the

set of players is N = f1; 2; 3; 4g, the set of states is Z = fA;B;C;D;Eg, the utility for each
of the four players is displayed in the �gure next to each state, and the e¤ective coalitions

that can move between states are depicted with arrows. Thus, for example coalition f1g is
the only coalition that can a¤ect a move from State A, and such a move leads to State C.

The aim is to identify the set of stable states, that is, the set of states from which farsighted
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players will not move. Clearly, both states D and E, which are terminal states and movement

therefrom is impossible, are stable. The identity of the player, either 3 or 4, that gets the

opportunity to be the �rst to move from State C is not speci�ed in an abstract game. Despite

such uncertainty, farsighted reasoning naturally suggests that both Players 1 and 2 strictly

prefer to move from their States A and B, respectively. Indeed, Player 4 strictly prefers to

move from State C to States E, wherein Player 4 is strictly better o¤ than at either State

C or State D. Given the opportunity to move �rst at State C, Player 3 strictly prefers to

move therefrom to State D in order to preempt such a move by Player 4 from State C to

State E, wherein Player 3 would be strictly worse o¤ than at D. Since both Players 3 and 4

strictly prefer to move from State C, the moves by Players 1 and 2 would yield for both of

them some non-deterministic prospect of utilities 1; 3, which both of them strictly prefer to

the utility, 1, they have, for sure, at States A and B.

According to the SPCS, as will be further elaborated in Section 2, States D,E are reachable

from State C, namely there is a subgame perfect equilibrium in which D,E are �nal states

when the initial state is C. Consistency requires that all reachable and stable states are �nal

states following a move from either A or B. This, in turn, together with subgame perfection,

implies that Players 1 and 2 will move from States A and B, respectively. Thus, according to

the SPCS, which extends farsighted stability beyond the con�dence assumption, States A,B

and C are not stable, and the SPCS in the above example consists only of the terminal states,

i.e., fD,Eg.
By contrast, in Section 4 we show that LCS = LCCS = vNM FSS = fB,D,Eg, whereas the
RE solutions (including Kimya 2020) predict also the sets fA,D,Eg and fD,Eg. We conclude
that only the SPCS prescribes/predicts optimal moves for Players 1 and 2. Farsighted play-

ers according to the SPCS would move from States A and B and realize a non-deterministic

prospect of utilities 1; 3, which is preferable to staying at States A and B according to which

they will attain for certainty a utility of 1. As is clari�ed in Section 4, the RE based solu-

tions fail because they subscribe to the con�dence assumption. They rely on a deterministic

expectation function (or the similar concept of coalitional behavior), which identi�es, with

certainty, the moving coalition, if any, at each state and the resulting new state.

The SPCS shares with some existing expectation function farsighted solution concepts

the use of vNM type of consistency. But di¤erently, it does not identify a unique moving

coalition, if any, at each state and the resulting new state. Rather, it relies on a strategy

pro�le to ensure commonly held beliefs, endogenously determined, about the probabilities

with which coalitions are selected to a¤ect a change, if any, at each stage, and about the

continuation paths following coalition moves. The SPCS could be history-dependent, and

since the players are guided by subgame perfection, coalitions are employing best response
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moves, thus satisfy maximality. As in the case with other static farsighted solution concepts,

the SPCS is a natural solution concept in settings in which actions are public, transient

states have no payo¤ consequences, and payo¤s are realized only when players reach a �nal

agreement.

We investigate the SPCS under two di¤erent assumptions on the endogenously determined

protocol, which, as part of the subgame perfect equilibrium, following any history generates

the coalition that can a¤ect a move from the current state. Under one assumption, the

protocol always has full support, thus any of the coalitions that can a¤ect a move from

the current state are generated with positive probability by the equilibrium protocol, and

maintain the notation of SPCS to denote the corresponding farsighted solution concept.

Under the other assumption, called regular protocol, at least one coalition, if one exists,

that can a¤ect a move from the current state is generated with positive probability by the

equilibrium protocol, and denote the corresponding solution concept as SPCS*. We prove

existence of SPCS* for any �nite game. In the sequel, unless explicitly stated otherwise, any

reference to SPCS is implicitly also a reference to SPCS*.

We analyze and characterize our solution concept for the general case when coalition

moves are possible. However, we are particularly interested to study situations in which

only moves by individual players are allowed. This would correspond, e.g., to farsighted

settings based on Cournot and Bertrand competition, where players are not allowed to

collude or coordinate their actions. Indeed, we study the structure of the SPCS for the class

of farsighted normal form games (possibly with a continuum set of states). In particular,

we show that even when only single players can move, quite surprisingly, farsighted players

who follow the reasoning of the SPCS (and SPCS*) would always be able to achieve (weak)

Pareto e¢ ciency in any normal form game having a pure Nash equilibrium. Thus, the SPCS

reasoning leads to e¢ ciency in �farsighted�versions of, e.g., Bertrand games, Cournot games,

some instances of decentralized supply chains coordination problems, network formation, and

the Prisoner�s Dilemma. For all these settings, a SPCS is a singleton set consisting of a unique

Pareto e¢ cient outcome (up to equivalence to all players) weakly dominating a myopic (pure

Nash) equilibrium outcome, which would be realized if the players are myopic. Such a Pareto

e¢ cient outcome is achieved using strategies similar to �grim-trigger�strategies commonly

used in folk theorems within the repeated games literature. An important contribution

of our approach is that, contrary to many cooperative game models which assume Pareto

e¢ ciency from the start, we derive such e¢ ciency within a noncooperative framework. This

is undertaken using strategies that could be thought of as modelling tacit negotiation.

Our results on the SPCS (SPCS*), which was introduced to model farsighted behavior

in abstract games and was surprisingly found to lead to Pareto e¢ ciency in normal form
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games having a Nash equilibrium, are indeed somewhat related to the vast literature on

repeated games, wherein conditions are provided that possibly induce cooperation in non-

cooperative settings. That is, like in repeated games, where playing repeatedly the same

non-cooperative game may lead to cooperation and e¢ ciency, our results reveal that players

who follow the logic of the SPCS would cooperate in farsighted versions of normal form

games having a pure Nash equilibrium. However, we note that while �grim-trigger�strategies

in repeated games may lead to cooperation, there are also equilibria in which the players

may fail to do so. For example, in a repeated games setting of the Prisoners�Dilemma,

repeated defection at each stage may also be an equilibrium behavior by the two players.

By contrast, as mentioned above, in the farsighted version of the Prisoners�Dilemma with

individual moves, the SPCS consists uniquely of the strategy pro�le corresponding to the

socially optimal outcome. Consequently, contrary to repeated games in which e¢ ciency is

achieved as a possibility, the SPCS achieves e¢ ciency as a necessary implication.

We further show that the SPCS reasoning leads to e¢ ciency also for normal form games

having no myopic equilibrium, given that one is willing to accept as possible an undesirable

outcome of the game corresponding to a �swinging�behavior in which some of the players

keep on moving between states. We show that all the above results continue to hold when

coalition moves are permitted, where in this case a myopic equilibrium is a state from which

no coalition strictly prefers a single move.

In some sense, our approach for farsightedness in abstract games is related to that of

Herings et al. (2004), who associate with a �nite abstract game a non-cooperative �nite

horizon multistage game with observed actions, and apply extensive-form rationalizability in

the sense of Pearce (1984) on this game in order to de�ne their solution concept, consisting

of the socially realizable outcomes. They show that their solution concept is not empty and

that it satis�es a certain coalitional rationality property.

In the above approaches for farsightedness the players only care about the �nal outcome

the negotiations lead to, and are referred to in the literature as static. In the dynamic

approach to farsightedness, see, e.g., Konishi and Ray (2003) and Ray and Vohra (2015a),

with their equilibrium process of coalition formation (EPCF) concept of solution, players

get discounted state-dependent payo¤s at each state. In Kimya�s (2020) study of extended

coalition games, the utilities of players are de�ned over the paths of play, which allows his

model to accommodate both the static and dynamic approaches.

Finally, we note that farsighted solution concepts and various re�nements and modi�-

cations thereof, were applied in a variety of settings. For example, they were employed in

studies on coalition formation (e.g., M&V 2004, Granot and Yin 2008, Nagarajan and So�ic
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2007, Herings et al. 2010), e¢ ciency in some classes of normal form games3 (e.g., Suzuki

and Muto 2005, Kawasaki 2015, and Bloch and van den Nouweland 2021), network stability

(e.g., Page et al. 2005, Dutta et al. 2005, Herings et al. 2009, Page and Wooders 2009,

Kimya 2020, and Luo et al. 2021), patent licensing negotiation (Hirai et al. 2019), hedonic

games (Diamantoudi and Xue 2003, 2007), matching (Mauleon et al. 2011) and formation

of alliances (Cai and Kimya 2023). Not surprisingly, farsighted reasoning could yield quite

di¤erent insights than those derived from myopic considerations. For example, in coalition

formation studies (e.g., M&V 2004, and Granot and Yin 2008), it is shown that under certain

conditions, farsighted players would adhere to the grand coalition to the bene�t of all players.

By contrast, myopic players would defect and form the stand-alone coalition structure, to

the detriment of all players.

The plan of this paper is as follows. In Section 2 we introduce the farsighted game,

formally de�ne the SPCS and the SPCS* farsighted solution concepts, investigate some of

their basic properties, and prove the existence of the SPCS* for any �nite game. In Section

3 we introduce farsighted normal form games, derived from standard one-shot normal form

games by allowing players, or coalitions, to publicly and repeatedly, in their turn, change

their previous actions. For this class of games, we prove that any set of outcomes weakly

dominating a myopic equilibrium is a SPCS (and SPCS*) if, and only if, it consists of a

single Pareto e¢ cient outcome (up to equivalence to all players). The analysis is extended

to farsighted normal form games without a myopic equilibrium. We illustrate in Section

3 the signi�cance of our �ndings by demonstrating, for example, that by contrast with

existing farsighted solutions such as the LCS and the LCCS, but similarly, e.g., to the

vNM FSS, farsighted players who follow the SPCS reasoning are always able to share the

monopolistic pro�t in farsighted settings based on Bertrand and Cournot competition. We

further show that farsighted players who follow the SPCS reasoning are always able to achieve

full coordination and Pareto e¢ ciency in decentralized supply chain contracting even when

they cannot form coalitions. Finally, we model a network formation process as a farsighted

normal form game involving only individual players, and use the SPCS to generalize existing

results which mollify the tension between stability and e¢ ciency in network formation. In

Section 4 we brie�y survey related farsighted solution concepts in the literature and compare

them, including examples, to the SPCS. Section 5 provides concluding remarks. All proofs

are collected in an appendix.

3See further Section 3.1.
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2 Model and Solution: The Subgame Perfect Consis-

tent Set

Consider a dynamic game in which players can act repeatedly and publicly by moving be-

tween states they care about. For example, one may think of a group of �rms engaged in

contract negotiation, in which a state is a vector of contract parameters set by the �rms, and

each �rm is responsible for a di¤erent part of the vector. Players only care about the �nal

state reached, either in an actual negotiation (e.g., Hirai et al., 2019) or in a tacit negotiation

(e.g., Suzuki and Muto, 2006), irrespective of the sequence of actions that lead to it. Thus

actions have no signi�cant costs, and the time frame in which they are taken is short with

no relevant discounting of the �nal state utility. Despite the dynamic nature of the game, it

can be thought of as a one period interaction between the players.

In this section we formally study such a dynamic game for the purpose of introducing

and analyzing our farsighted solution concept, the SPCS. We �rst present in Section 2.1 our

Farsighted Game model, and subsequently, subgame perfect equilibrium in Section 2.2, the

SPCS approach in Section 2.3, and some initial analysis in Section 2.4 via an example and

several general results, including existence.

2.1 Farsighted Game

The setting can be described as an abstract game (Chwe 1994, see also Greenberg 1990),

denoted by hN;Z; (ui)i2N ; (!S)S�Ni, where: N is a non-empty, �nite set of players; Z is

a non-empty, measurable set of states; the utility function ui : Z ! R for each i 2 N

determines player i�s utility from a state z 2 Z (when it is a �nal state); and the binary

relation!S� Z�Z for each S � N describes the players ability to change the current state,

where z1 !S z
2 for z1; z2 2 Z means that coalition S of players can alter the current state

z1 by moving to a new state z2 (with the empty coalition always having null e¤ectiveness,

i.e. !;= ;). A state z 2 Z is said to be terminal if there is no z0 2 Z, z0 6= z, and

S � N , such that z !S z
0. For example, in the contract negotiation setting, Z can be

the set of all contract parameter vectors possibly set by the �rms, and the e¤ectiveness of

a singleton coalition S = fig, consisting of a single player i, allows the player to alter the
current state by changing their own contract part without changing the parameters set by

the other players. Furthermore, in this example, the e¤ectiveness of a coalition consisting of

two or more players can describe agreements between members of the coalition that allow

particular simultaneous changes in the parameters set by all members of the coalition (again

without changing the parameters set by players outside the coalition).
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As mentioned above, we envision an extensive form game with perfect information, in

which all actions are public, which we call the Farsighted Game (FG). The complete descrip-

tion of the game is given by the following sequence of events. First, an initial state in Z is

publicly chosen by a dummy player c, referred to as nature, who is assumed to be indi¤erent

between all states in Z. Then, an in�nite sequence of stages initiates, each stage consisting

of the following two steps: (Step 1) some coalition is publicly selected by nature; and (Step

2) the selected coalition can publicly keep the current state unchanged or move to a new

state in Z according to its e¤ectiveness. The assumption that nature selects the initial state

is taken only to re�ect the fact that none of the players in N can a¤ect this choice �one

could alternatively de�ne the game with a prespeci�ed initial state instead of selection by

nature. Note that in a setting where players can repeatedly observe the actions made by oth-

ers and adjust their own actions accordingly, full farsightedness may necessitate unbounded

play: actions are made taking into account the fact that any move by a coalition may be

counteracted with a further move by another coalition, without limit. Such an approach is

in the spirit of modelling farsighted negotiation. It is natural therefore that players only care

about the �nal outcome of the negotiation process, with no intermediate payo¤s.

Formally, for the extended set of players Nc = N [ fcg, de�ne the set H of all possible

histories in the game as the set of all possibly in�nite sequences h = (hk)
Kh
k=0, including the

empty sequence when Kh = �1, such that h0 is some initial state in Z, for all odd numbers
k � 1, hk is some coalition S � N , and for all even numbers k � 2, hk 2 Z, such that
hk = hk�2 or hk�2 !hk�1 hk. For two �nite histories h; h

0 2 H with even, positive cardinality

such that h00 = hKh�1 or hKh�1 !hKh
h00, denote by (h; h

0) the history in H obtained when

h is followed by h0. Denote the set of in�nite histories by H1. De�ne the player function

P : H nH1 ! Nc by P (;) = c, P (h) = c for every �nite history h with odd cardinality jhj,
and P (h) = hKh

� N for every �nite history h with even, positive cardinality.

We say that a history h 2 H converges for player i if there exist �zi(h) 2 Z and an even,
positive number kh;i such that ui(hk) = ui[�zi(h)] for every even k such that kh;i � k � Kh.

Let k0h;i to be the minimal such kh;i. A history h converges when it converges for all players,

in which case we omit the player index and just write �z(h) and k0h. Convergence occurs, in

particular, when hk0h is a terminal state, or when h is �nite.
4 Denote by �H (resp., �Hi) the set

of all in�nite converging histories (resp., for player i). When an in�nite history h does not

converge for player i, we say that h leads for that player to �swinging�, denoted by w, and

de�ne �zi(h) = w and k0h;i = 1. Let �Z = Z [ fwg. Extend the utility function ui for each
player i to �Z by de�ning ui(w) = �1 for all i (see e.g., Harsanyi 1974, Mariotti 1997 and

4Our results would continue to hold if the stronger requirement hk = �z(h) was used instead of ui(hk) =
ui[�zi(h)] to de�ne convergence.
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Flesch et al. 2010, Kimya 2020, K&R 2021)5. This assumption �ts well with a negotiation

setting, as swinging behavior is similar to a disagreement outcome which all players prefer

to avoid. Nevertheless, we emphasize that swinging exists in our model in order to provide a

complete description of what might happen following any history. Importantly, our solution

concept does not rely on threats with swinging, on or o¤equilibrium path, in order to support

some outcome.

We would like our solution concept not to assume an exogenously given, speci�c process

which determines the coalition selected to make a choice. Therefore, in the FG, nature�s

behavior strategy, named protocol, is determined endogenously in the solution together with

the strategies of all coalitions. The protocol is a function �c, de�ned over fh 2 H n H1 j
P (h) = cg such that �c(h) at history h for which P (h) = c is a probability measure de�ned
over Z when h is the empty sequence and over 2N otherwise, specifying the distribution

over initial states and over the coalitions selected to make a choice. Say that protocol

�c is regular if for every �nite history h with odd cardinality jhj, �c(h)(S) > 0 for some

coalition S, if one exists, that has the e¤ectiveness to move at the current state, i.e. S with

fz 2 Z j z 6= hKh�1; hKh�1 !S zg 6= ;. Say that protocol �c is full support if �c(h) has full
support at every history h for which P (h) = c. For coalitions, randomizations are considered

in the analysis but are never implemented. A pure behavior strategy of a coalition S is a

function �S : fh 2 H n H1 j P (h) = Sg ! Z such that �S(h) 2 fz 2 Z j z = hKh�1 or

hKh�1 !S zg, specifying the action taken by this coalition after any history in the game where
this coalition is selected to make a choice. A strategy pro�le is a vector � = [�c; (�S)S�N ]

specifying the protocol �c and the strategy �S of each coalition S. Denote by ��S the

protocol �c together with the vector of strategies for all coalitions except for S.

2.2 Subgame perfect equilibrium

We consider subgame perfect equilibria of the FG. For the purpose of de�ning such equilibria,

it is su¢ cient to consider subgames beginning with coalitions�decisions, i.e. following �nite

histories h with even, positive cardinality. Following such h, a strategy pro�le � generates

a probability measure over the in�nite histories h0 beginning with h that are dictated by �.

Let �h denote the set of strategy pro�les which, following h, generate a probability measure

having support consisting only of in�nite converging histories. Our notion of farsightedness

relies on such strategy pro�les for all h. A strategy pro�le � 2 �h generates for player i a
5The results in this paper would remain unchanged if instead one adopted the approach of positive

recursive games (e.g., Flesch et al. 2010), by normalizing ui to be non-negative with ui(w) = 0, asso-
ciate any in�nite history h with an in�nite sequence of payo¤s consisting of a �nite pre�x of zero payo¤s
from transient/non-absorbing states followed by an in�nite, non-negative and constant su¢ x of the conver-
gent/absorbing state payo¤ ui[�zi(h)], and evaluate this sequence using the limit of the means criterion.
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distribution d�jh over �z(h0) 2 Z. This distribution has countable support because there are
�nitely many coalitions that may be selected and convergence occurs after a �nite history.

Elements of this support are called �nal states. To de�ne d�jh, let

��jh =

(
(h0k)

k0
h0
k=0

����� h0 2 �H; h0k = hk;8k 2 0; 1; : : : ; Kh and

h0k+1 = �h0k [(h
0
l)
k
l=0];8k = Kh; Kh + 2; : : :

)
.

The set of �nal states according to strategy pro�le � following history h, i.e. the support of

d�jh, is

	�jh = f�z(h0) j h0 2 ��jhg,

and then d�jh(z) =
P

fh02��jhj�z(h0)=zg
Q
k=Kh+1;Kh+3;:::;Kh0�1

�c((h
0
l)
k�1
l=0 )(h

0
k) for z 2 Z. Given

� 2 �h, a deviation of coalition S away from �S may lead to a strategy pro�le not in �h.

Therefore, more generally, any strategy pro�le � generates for player i a distribution di;�jh
over �zi(h0) 2 �Z, still with countable support because there are �nitely many coalitions that

may be selected and convergence to any z 6= w occurs after a �nite history. Similarly, for

each player i de�ne �i;�jh, 	i;�jh and di;�jh relying on �Hi; �zi(h
0) instead of �H; �z(h0), and let

di;�jh(w) = 1�
P

z2	i;�jh\Z di;�jh(z).

Subgame perfection in our approach is required with respect to coalitional risk preference

extensions obeying �rst order stochastic dominance and coalitional dominance consistent

with the given player utilities ui. In a subgame that follows a �nite history h with P (h) = S,

coalition S has a strict preference relation �S;h over strategy pro�les, where weak preference
%S;h and indi¤erence �S;h are de�ned from the strict preference �S;h in the usual way. When
the coalition is a singleton player i, we assume the following.

Assumption 2.1 For each player i, the preference relation �i;h is continuous, and � �i;h
�0 is implied if di;�jh strictly �rst order stochastically dominates di;�0jh, where �Z is ordered

according to ui.

Assumption 2.1 allows in particular for expected utility preferences. For our analysis, the

important implication of this assumption arises when considering a strategy pro�le which

leads to a degenerate distribution over �nal states, i.e. some z0 2 Z for sure (with probability
1). Such a strategy pro�le is strictly worse than any strategy pro�le leading to a non-

degenerate distribution over �nal states which assigns positive probability only to states in

Z at least as good as z0.

For general coalitions we assume the following.
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Assumption 2.2 For each coalition S, the preference relation �S;h satis�es that � �S;h �0

is implied if � %i;h �0 for all members i 2 S, with strict preference for at least one member
of S.

Given coalition preferences, we can de�ne a strategy pro�le � as a subgame perfect

equilibrium if � %S;h (�̂S; ��S) for every coalition S, every �nite history h with P (h) = S,
and every strategy �̂S for this coalition.

2.3 SPCS

In analyzing the farsighted game described above, we seek a solution concept that produces

a set of states considered farsighted stable. As mentioned in the Introduction, our proposed

solution is based on subgame perfection. In our approach, subgame perfection replaces the

various prescriptions embodied in all other farsighted solution concepts as to where a move

by a coalition, S, may lead to. To formalize where a move might potentially lead to under

subgame perfection, we say that a state z2 is reachable from a state z1 if there exists a

subgame perfect equilibrium strategy pro�le �, with � 2 �h following any �nite history h
with even, positive cardinality, such that z2 is a �nal state (i.e., the play converges to it with

positive probability) in a subgame in which z1 is the initial state. Denote by R(z1) the set

of states z2 reachable from z1 with full support protocol �c, and by R�(z1) the set of states

z2 surely (i.e., with probability 1) reachable from z1 with regular protocol �c. For a state

z to be a �nal state according to a subgame perfect equilibrium, it must be reachable from

itself.

We note that a solution concept de�ned as the vNM stable set with respect to the

reachability relation R or R� would not exist in many simple examples, e.g., in the roommate

game. By contrast, we show (Theorem 2.1), for example, that our solution concept exists

for all �nite games. Furthermore, by contrast with, e.g., the RE approach, coalition S does

not know for certain where its move would end up, since it does not know with certainty the

identity of the coalition that will move at each state and the state it would move to, until

a �nal stable state is reached, if at all. Accounting for this inherent uncertainty requires

departure from the standard de�tion of vNM stability.

Essentially as all other farsighted solution concepts, such as those based on the RE

approach, as well as the LCS and the vNM FSS, our solution concept, the SPCS, is based on

a consistency notion in the spirit of vNM stable sets (von Neumann and Morgenstern 1944).

Roughly speaking, this consistency notion requires the solution set X of states to satisfy

the following two properties: (i) farsighted internal consistency: for each state z 2 X, no
coalition prefers to move away from z, anticipating that such a move would eventually end
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up in X; and (ii) farsighted external consistency: for each state z =2 X, there always exists
a coalition that prefers to move away from z, again anticipating that such a move would

eventually end up in X. This leads to the following de�nition.

De�nition 2.1 A set of states X � Z is a Subgame Perfect Consistent Set (SPCS) if there
exists a subgame perfect equilibrium � with full support protocol �c such that the following

three requirements are satis�ed:

(a) for any history h = (z; S1; z; S2; : : : ; z; St) such that z 2 R(z) and fSlgt�1l=1 � 2N n ;,
�St(h) = z; and

(b) for any history h = (z1; S1; z1; S2; : : : ; z1; St; z2; St+1) such that z1 6= z2 and fSlgt�1l=1 +
2N n ;, the set of �nal states is 	�jh = X \R(z2); and
(c) z 2 X if, and only if, �S(h) = z for any coalition S and any �nite history h =

(z; S1; z; S2; : : : ; z; S).

A set of states X � Z is a SPCS* if the protocol �c is only required to be regular, and with
R replaced with R�.

Requirement (a) says that after choices by all coalitions to stay at an initial state z 2 Z
reachable from itself, z is the �nal state for sure. According to requirement (b), after an

initial move from an initial state by some coalition, all reachable states in X from z2, and

only them, are �nal states. Both requirements hold on or o¤ equilibrium path. Requirement

(c) incorporates the farsighted internal and external consistency properties described before

De�nition 2.1, which therefore form an additional sense of �xed point apart from the usual

one delivered by equilibrium: The setX is exactly the set of states from which, on equilibrium

path, no coalition moves when selected as initial states. Whenever X satis�es De�nition 2.1

with respect to �, we say that � supports X as a SPCS (or SPCS*).

2.4 Initial analysis

We �rst demonstrate our solution by considering the example presented in the Introduction.

Example 2.1 We apply the SPCS (resp., SPCS�) to the game associated with Figure 1.1.
A �rst step in the analysis is to establish the reachability functions R; R�. To this end,

consider the strategy pro�le �� de�ned for all h 2 H n H1 as follows: (i) ��c(h) for P (h) = c

assigns equal probabilities to each S � N , and (ii) ��S(h) for P (h) = S is equal to C if

S = f1g and h ends with kKh�1 = A or if S = f2g and kKh�1 = B, it is equal to D if

S = f3g and kKh�1 = C, it is equal to E if S = f4g and kKh�1 = C , and it is equal to kKh�1

otherwise. According to ��, each coalition is equally likely to be selected to make a choice

whether to keep the current state or to move to a new state, and all coalitions move to the
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unique possible state whenever they can. The set of �nal states following any history h with

P (h) � N is 	��jh = fD,Eg if kKh�1 2 fA,B,Cg and 	��jh = fkKh�1g when kKh�1 2 fD,Eg.
Furthermore, following any history h with P (h) = S, if S = f3g and kKh�1 = C then �� leads

to utiliy 2 to Player 3 following their move from State C to State D, which is strictly better

than the uniform distribution over f2; 0g if this player stays and then with equal probabilities
either f3g is selected and accordingly moves to D or f4g is selected and accordingly moves
to E. Similarly, if S = f4g and kKh�1 = C then �� leads to utility 3 to Player 4 following

their move from State C to State E, which is strictly better than the uniform distribution

over f0; 3g if this player stays and then with equal probabilities either f3g moves to D or

f4g moves to E. If S = f1g and kKh�1 = A or S = f2g and kKh�1 = B then �� leads to

some non-degenerate distribution over f3; 1g, which is strictly better than the sure utility of
1 if this player stays. Therefore ��S %S;h �0S for any strategy �0S and �� is a subgame perfect
equilibrium. Since any other subgame perfect equilibrium does not change 	��jh following any

history h, the reachability functions R;R� coincide and are given by R(A) = R(B) = R(C) =

fD,Eg, R(D) = fDg and R(E) = fEg.
Given R;R�, X = fD;Eg is a SPCS (resp., SPCS�) for this example, supported by

the strategy pro�le �X = ��. To see this, note that requirement (a) of De�nition 2.1 is

satis�ed since State D and State E are all the states satisfying z 2 R(z) (resp., z 2 R�(z)),
and both are terminal states. Requirement (b) is satis�ed since kKh�1 2 fA,B,Cg implies
	��jh = fD,Eg = X \R(kKh�1) and kKh�1 2 fD,Eg implies 	��jh = fkKh�1g = X \R(kKh�1).

Requirement (c) is satis�ed since kKh�1 2 fA,B,Cg implies �S(h) 6= kKh�1 for, resp., S =

f1g; f2g, and f3g or f4g, and kKh�1 2 fD,Eg implies �S(h) = kKh�1 for all S. Since any

other subgame perfect equilibrium does not change 	��jh following any history h, there is no

other SPCS (resp., SPCS�).

We now investigate some basic properties of our solution concept, starting with non-

emptiness.

Proposition 2.1 If a SPCS or SPCS* exists, then it is non-empty, and includes all terminal
states.

The following example demonstrates that existence is not guaranteed. In this example

the failure is due to the lack of a subgame perfect equilibrium.

Example 2.2 There is one player, Z is the set of natural numbers, u(z) = z for each z 2 Z,
and the player can only move from z = 1 to any z > 1 (with no other possible moves included

in the e¤ectiveness relation). In this example there is neither a SPCS or SPCS* because there

is no subgame perfect equilibrium: when z = 1 is selected as an initial state, for any choice

the player can make there exists a strictly better choice.
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Despite such examples, the following proposition provides a su¢ cient condition for exis-

tence.

Theorem 2.1 Whenever Z is �nite, there exists a SPCS*.

The argument in the proof of Theorem 2.1 initially shows that some state is surely

reachable from any state; this is then used in the construction of a set X using a �nitely

terminating iterative procedure, for which a corresponding strategy pro�le � is explicitly

constructed, which is then shown to support X is a SPCS*.

When analyzing farsighted normal form games in Section 3, we will show that the as-

sumption that Z is �nite is not necessary for existence. Indeed, a SPCS, as well as a SPCS*,

can exist also for games with an in�nite Z.

3 Farsighted Normal Form Games

In this section we analyze normal form games when they are viewed as farsighted games.

De�nition 3.1 A k-normal form game is an abstract game hN;Z; (ui)i2N ; (!S)S�Ni such
that k is integer with 1 � k � jN j, Z = �i2NAi, where Ai is the set of alternatives available
to player i, and for each z1; z2 2 Z and each coalition S � N , S 6= ;, the e¤ectiveness
relation z1 !S z

2 holds if, and only if, jSj � k and z1i = z2i for each i =2 S. A normal form
game is a k-normal form game for some k.

In view of De�nition 3.1, our analysis of normal form games allows for the typical re-

striction to only individual player moves when k = 1, but also allows for coalitional moves

whenever k > 1. We view the concept of a pure Nash equilibrium as myopic, as it does not

involve farsighted reasoning. Formally, a myopic equilibrium is de�ned as follows.

De�nition 3.2 In a normal form game, e 2 Z is a myopic equilibrium if ui(e) � ui(z) for
each i 2 S � N and z 2 Z such that e!S z.6

We show that the SPCS solution approach provides a surprising and striking conclusion

in the farsighted analysis of normal form games: whenever the game possesses a myopic

equilibrium, Pareto e¢ ciency is always and necessarily achieved. Moreover, Pareto e¢ ciency

is achieved even when coalition moves are not permitted.

6Our analysis also applies when considering Stackelberg games (and extensive form games with perfect
information in general) in their reduced normal form. This is justi�ed by the view that in the farsighted
perspective, the leader and the follower are indistinguishable. Thus, in this case, the results concerning
farsighted normal form games apply when replacing pure Nash equilibria with pure Stackelberg equilibria.
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When analyzing farsighted normal form games we assume that each player�s utility func-

tion is continuous, and that a SPCS / SPCS* is required to be a compact set. To state the

main result we need some additional pieces of terminology/notation. We say that a state

z 2 Z is Pareto e¢ cient if there does not exist a state z0 2 Z such that ui(z0) > ui(z) for
all i 2 N . Further, we write that Y � fz�g whenever a subset Y � Z is countable7 and

consists of states that are all equivalent for all players, i.e. there exists z� 2 Y such that

ui(z
0) = ui(z

�) for each player i and z0 2 Y . We can now state our main result.

Theorem 3.1 (1) For any normal form game, if X � Z is a SPCS or SPCS*, then X �
fz�g for some Pareto e¢ cient z� 2 Z; and
(2) For any normal form game, if X � fz�g for some Pareto e¢ cient z� 2 Z such that

ui(z
�) � ui(e) for some myopic equilibrium e 2 Z and all i 2 N , then X is a SPCS and

SPCS*.

Intuitively, the uniqueness of a SPCS or SPCS*, up to equivalence, stems from the sure

reachability relation. Namely, we prove, in Theorem 3.1, that every state in a SPCS, X, is

surely reachable from any state in Z. If not all states in X are equivalent for all players,

there is a strictly worse state z in X for some player i. Then, since a move by player i from

state z must end up at X (De�nition 2.1(b)), and any state in X is surely reachable after

such a move, player i would prefer to move from state z (see Assumption 2.1). Indeed, she

cannot be worse o¤ by such a move, and could possibly be strictly better o¤ from it. Thus,

state z cannot be stable and does not belong to X. The Pareto optimality of the unique (up

to equivalence) z� in X is shown to follow from the reachability from itself of any state d

which Pareto strictly dominates x�, if such a state d exists. Indeed, intuitively, in a subgame

starting at state d, coalitions will not to move therefrom since any such move, by De�nition

2.1(b), must end up at x� at which they are all strictly worse o¤. This intuition is shown

to imply, by De�nition 2.1(a,c), that state d is in X, contradicting the uniqueness (up to

equivalence) of z� in X.

For a 1-normal form game, as mentioned in the Introduction, the strategies supporting

a SPCS or SPCS* in Theorem 3.1 are similar to �grim-trigger�strategies commonly used in

folk theorems within the repeated games literature (see, e.g., Osborne and Rubinstein 1994),

adapted to our setting where a repeated stage game is not required. The strategies involve a

threat of reaching an undesirable outcome o¤ equilibrium path in order to create incentives

to reach a good outcome on equilibrium path. These strategies could be thought of as social

norms that are publicly known to all players in the game. Since no player has an incentive to

7As shown in the proof of Theorem 3.1, whenever X � R(z1) for any z1 2 Z, requirement (b) of De�nition
2.1 implies that X is necessarily a countable set.
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diviate from acting according to these social norms, they are indeed implemented, leading to

the outcome of the corresponding SPCS / SPCS*. But note that contrary to folk theorems in

repeated games, which do not claim to achieve e¢ ciency, we achieve e¢ ciency as a necessary

implication. Thus the contribution of Theorem 3.1 is the conclusion that whenever the

normal form game possesses a pure Nash equilibrium, such social norms must lead to Pareto

e¢ ciency, which is achieved rather than assumed.

Theorem 3.1 implies that a game with no Pareto e¢ cient states cannot have a SPCS or

SPCS*. Existence of Pareto e¢ cient states is a mild condition satis�ed in many interesting

settings as demonstrated in the following Example.

Example 3.1 Farsighted Prisoner�s Dilemma. In this 1-normal form game there are two

players, player 1 (the row player) and player 2 (the column player), each having two available

alternatives and utilities as in the following matrix.

D C

D 1; 1 4; 0

C 0; 4 3; 3

For this game there is a unique SPCS X = f(C,C)g. This SPCS is supported by the following
strategy pro�le �X : after a selection of any initial state, each player moves to the alternative

C and then does not move anymore, unless some player previously did not do so (or, both

players did not move from (D,D)), in which case each player moves to the alternative D and

then does not move anymore (see also proof of Theorem 3.1). As a result, the SPCS consists

of the cooperative outcome, (C,C), in the game. Note that for this example we show in

Section 4 that the LCS, the LCCS, the vNM FSS and any rational expectation function based

farsighted solution concept (all these solution concepts are described in Section 4), when it

exists for this example, is equal to f(C,C); (D,D)g.

Herings et al. (2004) have shown that their solution concept satis�es coalitional ratio-

nality. That is, they have considered the social environment with a set of players N , set of

outcomes, Z = fx0; x1; : : : ; xkg, only the moves, x0 !N xj, j = 1; : : : ; k, are possible, and

one outcome strictly dominates all other outcomes. Speci�cally, for all i 2 N and j 6= 0; k,
ui(xk) > ui(xj) > ui(x0) = 0. They have shown that in this social environment, the Pareto-

dominating outcome, xk, is selected by each coalition. Each individual only agrees to move

to the Pareto dominating outcome, and blocks all other moves. We can naturally cast the

above social environment, used by Herings et al. (2004), as a farsighted normal form game,

in which the set of strategies of each player is fx0; x1; : : : ; xkg, and for each j = 1; : : : ; k,

outcome xj would be realized if all players chose to play strategy xj, and otherwise, each
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player i would realize a utility ui(x0). Furthermore, as assumed by Herings et al. (2004),

for i 2 N , and j 6= 0; k, ui(xk) > ui(xj) > ui(x0) = 0. Then the SPCS in this game is

f(xk; : : : :; xk)g, since it is a Nash equilibrium in the associated normal form game which

strictly Pareto dominates all other strategy pro�les. Thus, similar to Herings et al. (2004)

solution concept, the SPCS can also be viewed as satisfying coalitional rationality in the

same social environment considered therein even without resorting to coalitions.

Theorem 3.1 provides su¢ cient but not necessary conditions for a Pareto e¢ cient state

to form a SPCS. Indeed, as demonstrated in the following example, we may have normal

form games where X = fz�g is a SPCS for some Pareto e¢ cient z� that does not weakly
dominate any myopic equilibrium.

Example 3.2 Consider a farsighted 1-normal form game with two players, 1 and 2, corre-

sponding to the row and column players, respectively, where each player has two alternatives

and the utilities are described by the following matrix.

L R

T 1; 1 1; 2

B 0; 2 2; 2

In this game the unique myopic equilibrium is (B;R), and thus is reachable from itself. By

Theorem 3.1, the set X = f(B;R)g is a SPCS. Note that (B;L) is not reachable from itself,

as player 1 can move and ensure the higher payo¤ 1. Similarly, (T;L) is not reachable from

itself, as player 2 can move and ensure the higher payo¤ 2. But note that (T;R) is reachable

from itself, and moreover, the set X = f(T;R)g is also a SPCS. This is true due to the
following strategy pro�le: at (T;R) both players stay; at (B;R) player 1 stays and player 2

moves to (B;L), unless 2 previously stayed, in which case they both stay and (B;R) becomes

the �nal state; at (B;L) player 1 moves to (T;L) and player 2 stays; at (T;L) player 1 stays

and player 2 moves to (T;R). To see that indeed this strategy pro�le forms a subgame perfect

equilibrium note that an attempt of 1 to improve by moving to (B;R) fails because 2 punishes

by moving to (B;L); 2 does not mind moving to (B;L) because 1 would move to (T;L), in

which case 2 would move and end up at (T;R); if, on the other hand, 2 stays at (B;R) then

1 stays there also, leading to payo¤ 2 for player 2, which is not strictly better than the payo¤

at (T;R).

The following example demonstrates the possibility of existence of a SPCS in a farsighted

normal form game despite the non-existence of a myopic equilibrium.
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Example 3.3 Farsighted Matching Pennies. Consider a 1-normal form game with two play-
ers (R and C), where each player has two alternatives and the utilities are described by the

following matrix.
1;�1 �1; 1
�1; 1 1;�1

In this game there is no myopic equilibrium, so Theorem 3.1 does not apply. Still, any set

consisting of a single state in Z is a SPCS, supported by a strategy pro�le similar to the one

used in Example 3.2, i.e., the two players always stay at the single state in the given SPCS,

and at any other state the player that receives utility �1 moves, unless both previously stayed
there, in which case no one moves anymore. In this case, the player that receives utility �1
in the single state of the given SPCS prefers to accept this utility than to insist on moving,

which would lead to swinging with utility �1. In this way, every state is reachable from
itself. Each diagonal in the matrix is also a SPCS, supported by a strategy pro�le in which

the players move only from states not on the diagonal.

We now provide an extension of the analysis above that applies to normal form games

having no myopic equilibrium. A game is said to be generic if ui(z) 6= ui(z0) for any player
i and any two distinct states z; z0. Furthermore, in the de�nition of reachability, consider

omitting the requirement that � 2 �h following any �nite history h with even, positive

cardinality. Under this extended reachability and the genericity assumption, Theorem 3.1

can be strengthened to an if and only if statement: for any generic normal form game, X � Z
is a SPCS, equivalently a SPCS*, if, and only if, X = fz�g for some Pareto e¢ cient state
z� 2 Z. Intuitively, regardless of the other players�actions, any coalition can threaten with
a swinging �nal state in a farsighted normal form game if it so desires, simply by always

electing to change the current state whenever it is selected to make a choice. Such a threat

can be used instead of a myopic equilibrium within the strategy pro�le supporting a SPCS

/ SPCS*. We will now show that this result can be strengthened even further: consider

an extension of De�nition 2.1 allowing swinging, w, to be a �nal state and a member of a

SPCS / SPCS*, where w is assigned some utility uwi (�nite or �1) for player i. Indeed, as
argued above, in a generic normal form game, regardless of the other players�actions, any

coalition can force a swinging �nal state in a farsighted normal form game if it so desires.

The de�nitions of 	�jh and d�jh are now extended to any strategy pro�le �, coinciding with

	i;�jh and di;�jh for all i. Note that Proposition 2.1 still holds: a SPCS / SPCS* is always

non-empty. This leads to the following result.

Theorem 3.2 For any generic normal form game, X � �Z is a SPCS, equivalently a SPCS*,

if, and only if, X = fz�g for some Pareto e¢ cient state z� 2 �Z such that ui(z�) � uwi for
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all i 2 N .

Theorem 3.2 provides us with necessary and su¢ cient conditions for the existence of a

SPCS / SPCS* when swinging is allowed and its normalized utility is zero for all players.

Re�ecting back on Example 3.3 we can appreciate the e¤ect of allowing a swinging behavior.

Example 3.4 Farsighted Matching Pennies with swinging assigned utility uwi = 0. By The-
orem 3.2, the singleton set fwg consisting of a swinging �nal state is the unique SPCS. This
is true because w is the unique Pareto e¢ cient state in �Z providing all players with non-

negative utilities (note that any other state is also Pareto e¢ cient but fails the non-negativity

condition, thus it is not reachable from itself).

3.1 Related Literature on Stability in Normal Form Games

Greenberg (1990) was the �rst to study myopic stability in non-cooperative games. He

has characterized the (myopic) vNM solution in the 2-player Prisoners�Dilemma, and, for

example, has proven existence of the (myopic) vNM solution for any 2-player normal form

game with �nite strategy sets. The vNM FSS in normal form games was �rst studied

by Muto (1993), who has shown that in the Prisoners�Dilemma problem, the vNM FSS

coincides with the (myopic) vNM solution8. Suzuki and Muto (2005) have shown that

in the class of n-person Prisoners�Dilemma games, with coalitional moves, any individually

rational and Pareto e¢ cient outcome is a vNM FSS and no other vNM FSS exists. Kawasaki

(2015) and Bloch and van den Nouweland (2021) studied the class of two-person normal

form games with �nite strategy sets. They proved that, with pairwise moves, any strictly

individually rational and Pareto e¢ cient strategy pro�le forms9 a singleton vNM FSS. They

have further characterized the vNM FSS for all two-person normal form games with �nite

strategy sets. They have shown, for example, that the Prisoners�Dilemma problem is the

only two-person normal form game that does not have a singleton vNMFSS. Indeed, it follows

from Proposition 5.1 in Bloch and van den Nouweland (2021), as well as from Proposition

3.7 therein, and Muto (1993)�s result mentioned above, that the vNM FSS in the Prisoners�

Dilemma problem contains the Nash equilibrium. By comparison, we have shown in Example

3.1 that in the Prisoners� Dilemma problem, the SPCS consists uniquely of the pair of

strategies yielding the cooperative (socially optimal) solution.

8For related studies which investigate the vNM FSS in more general normal form games than the Prisoners
Dilemma, see, e.g., Suzuki and Muto (2005), who allow for coalitional deviations, and Nakanishi (2009),
wherein only individual deviations are possible.

9Kawasaki (2015)�s proof had to invoke a mild restriction on the payo¤s.

21



We note that although the SPCS and the vNM FSS do not coincide in the Prisoners�

Dilemma problem, they do coincide in some other instances of two-person normal form games.

For example, Bloch and van den Nouweland (2021) have proven that, for two-person normal

form games, (i) if a strategy pro�le s is a Nash equilibrium that is not Pareto dominated

by any other strategy pro�le, then fsg is a singleton farsighted stable set (Corollary 4.9
therein), and (ii) if s Pareto dominates all other strategy pro�les, then fsg is a singleton
farsighted stable set and it is also the unique farsighted stable set (Corollary 4.10 therein).

Then, it can be shown that our Theorem 3.1 implies that in case (i), fsg is also a singleton
SPCS for n-person normal form games, and that in case (ii), fsg is also the unique SPCS
for n-person normal form games.

D&V (2020) have introduced a three-country pollution abatement game in which each

country i has two strategies, denoted as xi 2 f0; 1g, representing low cost and high cost

abatement technology strategies, respectively. For a given technology strategy vector by

the three countries, (x1; x2; x3), the utility for country i is given by ui(x1; x2; x3) = xi �
1
2
(
P

j 6=i xj)
2. They modelled the pollution abatement problem as a normal form game in

which the three countries select their abatement technologies simultaneously. In this normal

form game formulation, xi = 1; i = 1; 2; 3, is the unique Nash equilibrium, while the set

of strategy vectors which maximize the sum of the payo¤s to the three countries is T =

f(0; 0; 0); (1; 0; 0); (0; 1; 0); (0; 0; 1)g. Then, it was proven by D&V (2020) that their history
dependent farsighted solution concept, HREFS, consists of T , while T cannot be sustained

as the history independent version of HREFS, REFS, introduced by D&V (2017)10. Clearly,

since T is also the set of Pareto e¢ cient strategy vectors dominating the Nash equilibrium,

it follows from Theorem 3.1 that each strategy vector in T is a singleton SPCS for the

three-person pollution abatement problem.

3.2 Some Applications

In this section we brie�y illustrate the application of the SPCS approach to analyze various

classical oligopolistic settings, and some further examples.

3.2.1 Farsighted Bertrand and Cournot Competition

In the Bertrand and Cournot examples discussed in this subsection, as is the case in, e.g.,

Xue (1998), Masuda et al. (2000) and Suzuki and Muto (2006), the players �compete�only

once, based on the �nal quantities or prices reached. Intermediate quantities or prices are

transient states in a tacit negotiation. They are not o¤ered to the consumers and they

10See de�nitions of these two solution concepts in Section 4.
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bear no utility consequences whatsoever to the players. Thus, only the �nal values matter.

Swinging should be avoided, since if it occurs, revenues that could be realized by the players

will be forfeited. In the following we show that the SPCS extends the e¢ ciency results

obtained in the literature for symmetric settings using vNM FSS (Masuda et al. 2000).

Farsighted Bertrand Competition Consider a market with n sellers of a homogeneous

product that are engaged in farsighted price competition, in which seller i sets price pi. The

sellers face a downward sloping demand function D(p), where p is the lowest among the

prices they set. Suppose that the sellers have equal sales power, so that when the same price

is set by several sellers, each of them sells the same quantity. Assume further that there

are no �xed costs and the unit cost of the product for seller i is ci, with �c � mini ci. When
the unit costs are not all equal there is no real price competition because the seller with the

lowest unit cost can always set the price slightly below the second lowest unit cost and gain

the entire market alone.

It is well known that when this situation is viewed as a normal form game, there is a

unique Nash equilibrium in prices: all sellers with cost �c set the price p� = �c and the market

is split between them equally with zero pro�t to each of them.

For this setting a SPCS is X = fz�g where z� is a Pareto e¢ cient state in which several
(possibly all) sellers with cost lower than the monopolistic price, i.e. the price p that solves

max
p
(p� c)D(p),

each sets this price, which allows them to share the monopolistic pro�t equally among them.

The remaining sellers (if any) set some price higher than the monopolistic price and receive

zero pro�ts. This follows from Theorem 3.1 because such states z� are the only Pareto

e¢ cient states in Z that weakly Pareto dominate the unique Nash equilibrium state. For

comparison, Masuda et al.(2000) show for symmetric settings that the LCS contains all states

with positive pro�ts to all �rms, including Pareto non-e¢ cient states.

Farsighted Cournot Competition Consider a market with n sellers of a homogeneous

product that are engaged in farsighted quantity competition, in which each seller i sets

quantity qi. The sellers face a decreasing inverse demand function determining the market

price as, for simplicity, maxfa�Q; 0g, where Q =
P

i qi is the total quantity sold. Suppose

that there are no �xed costs and the unit cost of the product for seller i is ci. Thus the pro�t

to seller i is �i � qi(a�Q� ci) when Q � a and zero otherwise.
It is well known that this normal form game has a unique Nash equilibrium in quantities,
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in which player i sells quantity

q�i = a� ci �
1

n+ 1

X
j
(a� cj)

and makes pro�t ��i = (q�i )
2 (this holds under the assumption that a � (n + 1)maxj cj �P

j cj, otherwise the market is not large enough to include all sellers in equilibrium). In the

symmetric case in which ci = c for all i, each player sells in equilibrium a�c
n+1

and makes pro�t

( a�c
n+1
)2.

To �nd the SPCS solution for this setting, Theorem 3.1 says that we need to compute

the Pareto e¢ cient states that weakly Pareto dominate the unique Nash equilibrium state.

Since in any state z 2 Z, the quantity sold qj = �j
a�cj�Q for all j, the pro�t �i of any seller i

can be written as a function f of the total quantity sold and the other sellers�pro�ts, given

by

f [Q; (�j)j 6=i] � (Q�
X

j 6=i

�j
a� cj �Q

)(a� ci �Q).

Therefore a Pareto e¢ cient vector of pro�ts, for which �j � ��j for all j 6= i, must satisfy

that �i maximizes f [Q; (�j)j 6=i] over the variable Q and subject to the constraint �i � ��i .
In the symmetric case, f [Q; (�j)j 6=i] simpli�es to Q(a� c�Q)�

P
j 6=i �j, for which the

maximal Q equals a�c
2
, independently of the other sellers� pro�ts. In this case seller i�s

pro�t is �i = (a�c
2
)2 �

P
j 6=i �j, as long as �j � ��j for all j (including i), and the total

pro�t is (a�c
2
)2. Such Pareto e¢ cient states always exist because for all n � 2, the total

pro�t is always higher than the total Nash equilibrium pro�t, n( a�c
n+1
)2. This allows the total

pro�t increase to be shared in some way between the sellers. Therefore the SPCS reasoning

implies that the sellers would share between them a monopolistic total quantity, allowing

them to share a monopolistic total pro�t in a way that improves for each of them on the

Nash equilibrium pro�t. For comparison, Masuda et al.(2000) show for symmetric settings

that the LCS contains all states with non-negative pro�ts to all �rms, including Pareto

non-e¢ cient states.

3.2.2 Decentralized Supply Chain Contracting

The SPCS can be used to analyze decentralized supply chains and can be shown to lead

to full coordination and Pareto e¢ ciency. We demonstrate this general point in the classic

setting of a vertical decentralized supply chain, based on the newsvendor model, with a

single supplier and several competing retailers. As is well known, system coordination and

Pareto e¢ ciency are trivially achieved in a cooperative bargaining/negotiation modelling of

this setting (see, e.g., Nagarajan and Bassok 2008). We demonstrate that they can also be
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achieved in a non-cooperative modelling of this problem when players are assumed to be

farsighted. Moreover, coordination is achieved contrary to the inability of revenue sharing

contracts to do so in general (see Cachon and Lariviere 2005).

The market consists of n retailers that face uncertain demand for a di¤erentiated product,

where retailer i�s demand Di(p1; : : : ; pn; ") is decreasing in their own unit price pi, increasing

in each of the other retailers�unit prices pj and depends on a common random variable ".

Each retailer decides about the price pi and the inventory level qi to be ordered from a single

supplier before demand realization. The supplier charges each retailer a wholesale price w

per unit ordered and a share, m, of the retailer�s total revenue. The unit cost for the supplier

is c with no �xed costs.

When this arrangement is viewed as a revenue sharing contract signed between the sup-

plier and the retailers, the setting becomes a two stage model: �rst the supplier sets the

charges, (w;m), under equal11 contractual terms across the retailers, and then the retailers

set the prices, pi, and order the quantities, qi. Solving for Nash equilibrium of the second

stage, each retailer�s pro�t, (1 � m)piE"minfqi; Di(p1; : : : ; pn; ")g � wqi (where ED is the
expectation operator over the distribution of the random variable "), is maximized given the

other retailers�choices, leading to equilibrium prices and quantities as a function of the con-

tract parameters (w;m). In the �rst stage one seeks a contract that coordinates the supply

chain by achieving the system optimal quantities and prices. Note that such revenue sharing

contracts, when the retailers must be o¤ered equal contractual terms by the supplier, are

unable to coordinate the system when the retailers are asymmetric (see, e.g., Cachon and

Lariviere 2005 and Krishnan and Winter 2011).

The implications of the SPCS reasoning for this setting are very di¤erent. A state z in

the game consists of a vector [w;m; (p1; q1); : : : (pn; qn)], so the wholesale price, the revenue

share m, the inventory levels qi and the prices pi are viewed as alternatives than can be

altered in the game tree without limit. By Theorem 3.1, we look for the Pareto e¢ cient

states that weakly dominate the Stackelberg equilibrium. The wholesale price w and the

revenue share m do not a¤ect the system pro�t, but only determine how it is shared between

the players. Therefore a SPCS is a single state z� consisting of optimal prices and quantities

for the system, and wholesale price and revenue share values that split the optimal system

total pro�t such that each player is weakly better o¤ than in the equilibrium. Such wholesale

price and revenue share values exist whenever the equilibrium system pro�t is strictly lower

than the optimal one. Therefore, in contrast to the traditional equilibrium analysis, the

SPCS reasoning leads to system coordination.

11Equal contractual terms are legally required in the USA by the Robinson�Patman Act of 1936.
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3.2.3 Farsighted Network Formation

Networks are often used to model interactions among individuals in various social and eco-

nomic situations, see, e.g., Jackson (2010). The individuals, referred to as players, are

represented by nodes in a graph and a link, or edge, (i; j), in the graph stands for an existing

interaction between players i and j. Players strive to maximize their utilities from inter-

actions with other players, and for that purpose, establish links or dissolve existing ones.

The two main questions addressed in the literature are which networks, to be referred to as

stable networks, could emerge from such a process and whether stable networks are e¢ cient,

i.e., maximize the total utility associated with the interactions among all players. In static

models of network formation, the players derive their utilities only from the �nal network

that has been reached, i.e., a stable network.

Evidently, there is a tension between stability and e¢ ciency. That is, stable networks are

not necessarily e¢ cient. In the static case, this result was shown by Jackson and Wolinsky

(1996) for the myopic case, and for the farsighted case by Herings et al. (2009). In the

dynamic case, where players get discounted utilities during the entire network formation

process, the tension between e¢ ciency and stability was con�rmed by Dutta et al. (2005).

By contrast, however, Kimya (2020) has proven, for example, that in the dynamic case, under

some conditions, every e¢ cient network can be supported as the prediction of his farsighted

solution concept, (C)ECB. Finally, Luo et al. (2021), who have used the myopic-farsighted

stable set to study network stability with both myopic and farsighted players, have shown

that, under some conditions, replacing myopic players with farsighted players alleviate the

tension between stability and e¢ ciency.

We propose to model network formation as a farsighted 1-normal form game. For each

player i, the set of alternatives, Ai, consists of all coalitions in N n fig, and player i�s action,
S � N n fig, represents the set of players/nodes with whom she would like link. The

network, at the outset of any stage k, consists of all edges, (i; j), for which players i and j,

in their most recent moves prior to stage k, if any, have both included one another among

those players with whom they want to link. Note that existing network formation processes

studied in the literature involve coalitions move, mostly by pairs of players who form links

between themselves. In the network formation process embodied in the farsighted 1-normal

form game, only individual players are involved.12

To present our result, we need to introduce some basic de�nitions. An allocation rule

associated with a network g allocates the value of g, v(g), among the players. It is commonly

assumed that the value function v(g) is component additive, that is, v(g) is equal to the sum of

12For a related network formation literature in which individual players, unliterally, establish costly links
to access bene�ts generated by other players, see, e.g., Bala and Goyal (2000).
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the values of its maximally connected components, and that an allocation rule is component

balanced, meaning that for each maximally connected component, C, of g, the value, v(C),

is divided among the players in C.

Now, it is usually assumed that v(fig) = 0 for all i. Indeed, Dutta et al. (2005) have

normalized the value of singletons to zero, and for some network models studied in the

literature, see, e.g., Jackson and Wolinsky (1996) and Dutta et al. (2005), the values of

singletons implied by the context of the applications are zero. So, without much loss of

generality, we will assume that the values of singletons are zero. Finally, note that for non-

negative value function and allocation vector, there is a Nash equilibrium in the myopic

normal form game associated with network formation, wherein the utility for each player is

zero.

Then, our contributions to mollifying the tension between e¢ ciency and stability in

network formation, achieved only by actions taken by individual players, follows from part

(2) of Theorem 3.1:

Corollary 3.1 Assume a non-negative and component additive value function and compo-
nent balanced and non-negative allocation vector, and consider the farsighted 1-normal form

game representing a network formation process carried only by individual players. Then, (i)

a network g is Pareto e¢ cient if and only if fgg is a SPCS or SPCS*, in particular, if
g is a socially e¢ cient network then fgg is a SPCS and SPCS*, and (ii) if there exists a
network g that strictly Pareto dominates all other networks, then fgg is the unique SPCS
and SPCS*.13

4 Comparison to the Related Literature

We brie�y review in this section related farsighted solution concepts introduced in the lit-

erature, and use Example 1.1 discussed in the Introduction, as well as other examples, to

compare the SPCS to these solution concepts.

The SPCS, as well as many other related solution concepts, e.g., those introduced by Chwe

(1994), M&V (2004), D&V (2017), D&V (2020), and K&R (2021), are de�ned in a general

setting, described by an abstract game, as introduced in Section 2. Indirect dominance,

�rst proposed by Harsanyi (1974) in the context of coalitional games, and then employed by

Chwe (1994) to introduce the Largest Consistent set (LCS) for abstract games, is de�ned as

follows:

13See a similar result by Herings et al. (2009) and their pairwise farsightedly stable set.
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De�nition 4.1 [Harsanyi 1974, Chwe 1994]. Indirect Dominance: We say that a state
a 2 Z is indirectly dominated by a state b 2 Z, or b� a, if there exist states a0; a1; : : : ; am 2
Z, where a0 = a and am = b, and coalitions S0; S1; : : : ; Sm�1, such that al !Sl al+1 and

ui(b) > ui(al) for all l = 0; 1; : : : ;m� 1 and i 2 Sl.

De�nition 4.2 [Consistent Set, Chwe (1994)]. A set K is consistent if K = fx 2 Z j 8y; S
with x!S y, 9z 2 K, where either z = y or z � y, such that ui(x) � ui(z) for some i 2 Sg.

The LCS employs a pessimistic, rather than an optimal criterion for a move. That is, a

move by coalition S from a State z is rejected if it could lead, via indirect dominance, to a

stable state at which not all members of S are strictly better o¤. Nevertheless, the LCS has

remained an important solution concept that has received much attention in the literature,

and its relation to other solution concepts are often explored.

The vNM solution for abstract games, wherein ordinary dominance is replaced by indirect

dominance, referred also as the vNM farsighted stable set (vNM FSS), is contained in the

LCS (Chwe 1994). It leads to sharper results than the LCS in several instances, such as

symmetric Cournot and Bertrand oligopoly markets (Suzuki and Muto 2006 and Masuda et

al. 2000), and one-to-one matching games (Mauleon et al. 2011 and Diamantoudi and Xue

2003), and it was further shown to generate new insights into patent licensing negotiation

(Hirai et al. 2019). However, the vNM FSS could still yield not very insightful results.

For example, for a game based on the provision of a perfectly �lumpy�public good, without

coalitions, it was shown by Kawasaki and Muto (2009) that the vNM FSS includes almost

all individually rational outcomes.

Page andWooders (2009) have introduced a model of network formation whose primitives

consist of a set of networks, players�preferences, rules of network formation, and a dominance

relation on feasible networks. As noted by the authors, their network formation game can

be viewed as an abstract game with a �nite set of states and a dominance relation among

states which could be either direct dominance, indirect dominance, or path dominance.

It should be noted that, prior to Chwe, Greenberg (1990) has developed the theory of

social situations, wherein he has introduced the concept of a stable standard of behavior

(SB), which is claimed to capture perfect foresight by individuals or coalitions. Some precise

relationships between a stable SB and the LCS were investigated by Chwe (1994). Xue (1998)

has argued that the LCS captures only partial foresight, and by employing Greenberg�s (1990)

framework, characterized a set of paths which constitutes a stable SB. See also Brams (1994)�s

theory of moves (also Brams and Wittman 1981, Kilgour 1984) for a dynamic, �nite game

tree approach to two-player, two-strategy normal form games, and Mariotti (1997), wherein
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a farsighted solution concept similar to a stable SB is shown to achieve partial e¢ ciency in

normal form games with coalitions.

The pessimistic criterion embedded in the de�nition of the LCS is somewhat molli�ed

in Mauleon and Vannetelbosch (M&V, 2004) Largest Cautious Consistent set (LCCS). The

LCCS is a proper re�nement of the LCS, which could possibly be empty, wherein players are

less pessimistic than in the LCS. Speci�cally, as argued by M&V, a state is never farsighted

stable if a coalition, S, can move therefrom, and by doing so there is no risk that some

coalition members of S will end up worse o¤, while such a move could also lead to a stable

state at which some or all members of S being strictly better o¤. The LCCS does provide

new insights in some instances, as shown, e.g., by M&V (2004) in their study of coalition

formation, and by Granot and Yin (2008) in their analysis of a single-period two-stage supply

chain problem.

This criticism against the LCS, LCCS, and vNM FSS has led to the development of

other farsighted solution concepts for abstract games, see, e.g., D&V (2017), D&V (2020),

Kimya (2020) and K&R (2021). These new farsighted solution concepts incorporate various

maximality requirements for coalitions�moves, and they further adopt the logic underpinning

the vNM solution and satisfy vNM type internal and external stability requirements. They

employ a modi�cation of Jordan�s (2006) expectation function and introduce an expectation

function, F , to describe the transition from one state to another, as well as the coalition that

is supposed to a¤ect that transition in the abstract game. The RE function F ensures that

all players have commonly held beliefs about the sequence of coalitional moves, if any, from

every state.14 Thus, F predicts with certainty the unique coalition, S, to be active at any

state and the derived state, after the move by S, if any. If no coalition wants to change the

current State, z, then z is referred to as a stationary state of F . An expectation function,

F , is said to be absorbing if for every z 2 Z, the unique path prescribed by F leads to a

stationary point in Z.

An absorbing RE function F is said to be rational if it satis�es vNM type of internal and

external stability requirements, as well as a maximality requirement, in the sense that the

move by any coalition from a non-stationary point must be maximal. That is, there does not

exist another move leading to another stationary point at which all members of the moving

coalition are strictly better o¤. As noted by D&V (2017), their internal stability require-

ment is weaker than the ordinary vNM internal farsighted stability requirement, since the

farsighted objection has to be consistent with F . For the same reason, their external stability

requirement is stronger than the ordinary vNM external farsighted stability requirement.

D&V (2017) have proposed the set of all stationary points of a rational expectation F as a

14See Bloch and van den Nouweland (2020), for farsighted stability with heterogeneous expectations.
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farsighted stable set and refers to it as the rational expectation farsighted stable set (REFS).

They have further introduced the strong rational expectation farsighted stable set (SREFS),

which consists of all stationary points of a rational expectation F , in which the maximality

requirement is replaced by a stronger requirement, referred to a strong maximality. As shown

by D&V (2017), in general, both REFS and SREFS may not exist, but they were shown to

exist for some classes of games.

Dutta and Vartiainen (2020) have extended D&V (2017) to history dependent ratio-

nal expectation functions, and have proposed the history dependent rational expectation

farsighted stable set (HREFS) and the history dependent strong rational expectation far-

sighted stable set (HSERFS) solution concepts, which are the history dependent analogues

of REFS and SREFS, resp. A history at State z is the sequence of past moves and the coali-

tions involved in these moves until State z was reached. A history dependent expectation

function speci�es the active coalition and its move for all possible current states and past

histories. Clearly, history independence is a special case of history dependence. Thus, as

noted by D&V (2020), REFS and SREFS, are special cases of HREFS and HSREFS. Indeed,

D&V (2020) were able to derive non-emptiness results for their history dependent farsighted

solution concepts, which are not available for the REFS and SREFS solution concepts.

We note that in the rational expectation function solution concepts introduced by D&V

(2017), REFS and SREFS, as well as those introduced by D&V (2020), HREFS and HSERFS,

progression in the associated abstract game speci�ed by a RE function F is done along

indirectly dominated paths. That is, for a given RE function F , or RE F with an associated

history, H, if F speci�es a path, p, from some state z to a stationary state z�, then the

members of all the coalitions involved with the progression from z to z� strictly prefer the

utilities they derive at z� than those they attain at the states on p wherefrom they moved

according to F .

Karos and Robles (2021) have pointed out that when coalitions are provided with an

opportunity to move from a State z, they should be farsighted enough so as to compare the

consequences of their move from z to remaining at z and let other coalitions move from z.

Indeed, K&R (2021) introduced the extended expectation function, F , which assigns to each

state z, an ordered list (F 1(z); : : : ; F k(z)(z)), where F1 is the D&V (2017) basic expectation

function that speci�es the transitions among states, and each F j(z) consists of a coalition,

Sj(z), and a unique state, f j(z), to which coalition Sj(z) can move if all previous coalitions

on the ordered list, Sk(z), k = 1; : : : ; j � 1, have elected not to move from z.

A rational extended expectation function (REEF) is an extended expectation function

that, similar to REFS, SREFS, HREFS, and HSREFS, satisfy vNM type internal and exter-

nal stability constraints, as well as satisfying the (ordinary) maximality constraint introduced
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by D&V (2017).

Speci�cally, for each z 2 Z let S1(z); : : : ; Sk(z)(z) be the ordered list of coalitions at State
z, so that coalition Sl(z) will get to move from state z to State f l(z) if all previous coalitions

on the ordered list elected not to move from z. Then K&R (2021) have imposed the following

requirements from their rational extended expectation function:

Internal Stability (I). For all z 2 Z and all coalitions T =2 fS1(z); : : : ; Sk(z)(z)g there is
l � k(z) such that for each y 2 Z with z !T y there is i 2 T for which ui(f l(z); F ) � ui(y; F ).
External Stability (E). For all z 2 Z and for all l = 1; : : : ; k(z) � 1, it holds that

ui(f
l(z); F ) > ui(f

l+1(z); F ) for all i 2 Sl(z).
Maximality (M). For all z 2 Z and for all l = 1; : : : ; k(z) � 1 it holds that if there is

y 6= f l(z) such that z !Sl(z) y, then there is i 2 Sl(z) for whom ui(f
l(z); F ) � ui(y; F ).

A rational extended expectation function (REEF) is an extended expectation function

that satis�es the I , E , and M requirements.

As noted by K&R (2021), their internal and external stability constraints are stricter than

those imposed by, e.g., D&V (2017), since coalitions/players in their model also need decide

whether to move or not. The set of all stationary points of a rational extended expectation

function is an equilibrium stable set (ESS). If it exists, the ESS is not empty. However,

similar, e.g., to the vNM stable set, vNM FSS, and REFS, the ESS may not exist, as is the

case, e.g., in the farsighted roommate problem.

Kimya (2020) has studied farsightedness in the class of extended coalition games. An

extended coalition game is closely related to an abstract game, with the important exception

that in an extended coalition game, the utilities of players are de�ned over the paths of play

rather than on terminal states, which allows the model to accommodate both the static and

dynamic approaches to farsightedness. Kimya employs the concept of a coalition behavior,

which, like an expectation function, provides a complete plan of action that assigns a unique

action to each state, to ensure that players have commonly held beliefs about the coalitional

moves at any state. Thus, it prescribes a unique terminal path to each node of an extended

coalitional game, where a terminal path is either in�nite or ends with a terminal state,

wherefrom there is no move.

Kimya (2020) has introduced two related solution concepts, the equilibrium coalition

behavior (ECB) and the credible ECB, CEBC, and has shown, for example, that CECB

exists in any �nite extended coalitional game. He has further explored the relationships

between his solution concepts and other related solution concepts in various classes of games,

such as, e.g., farsighted network formation games brie�y covered in Sub-Section 3.2.3.

Let us next analyze several simple examples of farsighted abstract games, and compare

the predictions of the various farsighted solution concepts of these examples.
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First, recall Example 1.1. As discussed in the Introduction, and further elaborated on in

Section 2, the unique SPCS of the abstract game associated with Figure 1.1 is fD,Eg, and
as such, it awards Players 1 and 2 utility of either 1 or 3.

Let us next study the other farsighted solution concepts for Example 1.1, starting with

the LCS. Again, clearly, as previously mentioned, States D and E are contained in the LCS,

as well as in all other farsighted solution sets. Further, State E indirectly dominates States

A,C, and no other indirect dominance relation holds in this example. Since a move by Player

2 from State B to State C could end up only at State E at which Player 2 is not strictly

better o¤, State B also belongs to the LCS. In contrast, State A is not in the LCS since a

move by Player 1 from State A can only end up at State E at which Player 1 is strictly better

o¤. We conclude that in Example 1.1, LCS = fB,D,Eg. Similarly, since also according to
the LCCS there is complete certainty in this example regarding the state at which any move

may end up, the LCCS = fB,D,Eg too. Finally, since State E indirectly dominates State A,
State A is not contained in the vNM FSS. However, State B is not indirectly dominated by

any other state, and thus, State B is in the vNM FSS, and we conclude that the vNM FSS

of Example 1.1 is also fB,D,Eg.
By comparison, let us apply the RE approach, REFS and SREFS (D&V 2017), HREFS

and HSREFS (D&V 2020), to the above example. According to this approach, a moving

coalition at each state knows with con�dence the �nal state her move would lead to, and all

coalitions on the path in the abstract graph leading to the �nal state are strictly better o¤

at the �nal state than at the state wherefrom they moved. Player 3 will not move from State

C since they are strictly worse o¤ at State D than at State C. Player 4 is strictly better o¤

moving from State C to State E, therefore moves by Players 1 and 2 to State C would end

up at State E, where Player 1 is strictly better o¤ than at States A, while Player 2 is just

equal o¤. Then, in this case, Player 1 (resp., 2) will move (resp., stay) at State A (resp., B),

leading to fB,D,Eg as a stable set. We note that history dependence, as allowed by D&V
(2020), does not alter the conclusion.

According to the K&R (2021) modi�cation of the RE function approach, with each state,

z, there is an associated ordered list of the e¤ective coalitions that get to move at State z.

So, in the above example, if Player 4 gets to move �rst at State C, they will elect to do so,

which would lead to fB,D,Eg as a stable set. However, if Player 3 gets to move �rst at State
C, then, in contrast with the solution discussed in the previous paragraph, they will do so,

to preempt a later move by Player 4 to State E, at which Player 3 is strictly worse o¤ than

at State D. Indeed, K&R (2021) argue that farsighted players should strictly prefer to carry

out a pre-emptive move from some state z, which would lead to a stable state, say, y, at

which they are strictly worse o¤, rather than let another coalition move from state z, which

32



would end up at another stable state at which they are even strictly worse o¤ than at state

y. But, at State D, Player 1 is equal o¤ than at State A and Player 2 is strictly better o¤

compared to State B. Thus, if Player 3 gets to move �rst at State C, Player 1 will not move

from State A, while Player 2 will move from State B, yielding fA,D,Eg, as another stable set
according to K&R (2021) modi�cation of the RE function approach. We conclude that the

stable sets according to the RE solution concepts predict the sets fA,D,Eg and fB,D,Eg.
Next, let us consider the prediction of Kimya�s (2020) static solution concepts, (C)ECB,

for Example 1.1. Thus, we assume that payo¤s are realized only at the �nal states. Consider

Case (i), where coalition behavior, �1, prescribes a move by Player 4 at State C, and moves

by Players 1 and 2 at States A and B, respectively. Then, neither Player 1, nor Player

2, nor Player 4 has a pro�table deviation from �1. Thus, �1 is a (C)ECB, leading to a

stable set fD,Eg. In Case (ii) consider the coalition behavior, �2, where Players 1 and 4
move but Player 2 stays at State B. Again, the players do not have a pro�table deviation

from �2, yielding a stable set fB,D,Eg. A similar analysis, where Player 3 moves at State
C with no credible pro�table deviation, would yield a CECB and the stable sets fA,D,Eg
and fD,Eg, and we conclude that the static CECB solution concept yields the stable sets
fA,D,Eg, fB,D,Eg and fD,Eg.
Thus, farsightedness, as embodied in all solution concepts other than the SPCS, stipulates

that either Player 1 or Player 2 may forgo a non-deterministic prospect of utilities 1; 3, and

remain at either State A or B, respectively, at which they will attain with certainty a utility

of 1. Note that, in part, the reasoning behind the preference within the SPCS for a non-

deterministic prospect of utilities 1; 3 is in the spirit of the LCCS modi�cation to the LCS,

which, by contrast with the LCS, prescribes a move when it may lead to strictly better states

and to no worse states. Indeed, the SPCS, as per Assumptions 2.1 and 2.2, is guided by �rst

order stochastic dominance to decide whether a state wherefrom a move is initiated is stable.

Nevertheless, the SPCS delivers here the intended prediction, whereas the LCCS fails to do

so.

Next, recall the farsighted Prisoners�Dilemma (PD) game analyzed in Section 3, with

only individual moves. In the abstract game representation of the PD, Player 1 (row player)

can move between States (C,C) and (D,C) and between States (C,D) and (D,D), while Player

2 (column player) can move between States (C,D) and (C,C) and between States (D,C) and

(D,D). The following matrix describes the indirect dominance � for this game, indicating

the cells for which the column state is indirectly dominated by the row state. For comparison,
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our reachability relations R, R� are also indicated in a similar manner.

(C,C) (C,D) (D,D) (D,C)

(C,C) R R� R R� R R� R R�

(C,D) �
(D,D) R R� � R R� R R� � R R�

(D,C) �

As can be seen from the above table, the state corresponding to (D,D) is not indirectly

dominated by any other state, the states corresponding to (C,D) and (D,C) are indirectly

dominated by (D,D), and the state corresponding to (C,C) is not indirectly dominated by

(D,D). We can therefore conclude that the LCS, LCCS, vNM FSS, and the RE solutions

concepts introduced by D&V (2017) and D&V (2020), in which progression in the abstract

game is along indirect dominating paths, consist of the cooperative and non-cooperative

strategy pairs, f(C,C),(D,D)g. Further, note that in the PD example, the utilities of each
of the two players in the four states are distinct. Then, since we do not consider non-

singleton coalitions, we can use Proposition 6 in Kimya (2020) to conclude that the SREFS

f(C,C),(D,D)g is also the stable set corresponding to the static ECB (and thus is a stable
set corresponding to the static CECB) of the farsighted PD game. Finally, we also note, via

the next result, that this is also the unique ESS for this example.

Lemma 4.1 The unique ESS for the PD game example is f(C,C),(D,D)g.

In contrast, as shown in Section 3, the unique SPCS for this game is f(C,C)g. Some intu-
ition for this stark di¤erence may be gained by comparing, via the above table, the relative

strength of subgame-perfect-reachability, as compared to indirect-domination-reachability.

Speci�cally, as mentioned earlier, according to indirect-domination-reachability, the only

reachable states from an initial state are those states which indirectly dominate it. By con-

trast, in the SPCS, players are guided by subgame perfection, which allows them to reach

states, from some starting state, which are not necessarily indirectly dominating it. For

example, in the PD example, the state corresponding to (C,C) is subgame-perfect-reachable

from, e.g., the state corresponding (D,D), but it is not indirect-domination-reachable from

(D,D).

In fact, the drivers of and the intuition behind the proof of Theorem 3.1 are the strength

of the subgame-perfect-reachability relation and the consistency requirement satis�ed by the

SPCS. Speci�cally, as demonstrated therein, the proof follows since (i) any state in the SPCS

of a farsighted normal form game is surely reachable from any state in Z, and (ii) o¤ the
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equilibrium path, any deviation to some new state could lead, with positive probability, to

any state in the SPCS.

To summarize, in the farsighted PD example, LCS = LCCS = vNM FSS = REFS = ESS

= f(C,C), (D,D)g, and the SPCS = {(C,C)}. Thus, in the farsighted PD, being a SPCS

neither implies nor is implied by being any of the other farsighted solution concepts sets.

Next, consider Example 1.1�, represented by Figure 1.1 with the modi�ed utility vectors

(3; 3; 0; 0); (3; 3; 0; 0); (0; 0; 3; 0); (0; 0; 2; 0) and (4; 4; 0; 3). Now, the only indirect dominating

paths in Example 1.1�are from State A to State E, and from State B to State E. Since

both Players 1 and 2 are strictly better o¤ at State E than at State A and B, respectively,

States A and B are not contained in the LCS. That is, LCS = fD,Eg. Similarly, we also
have LCCS = vNM FSS = fD,Eg. Moreover, since according to the RE solution concepts,
progression dictated by the RE function is carried out only along indirect dominating paths,

these RE solution concepts also lead to fD,Eg. However, according to the ESS (K&R

2021), progression in the abstract game, as dictated by the associated RE function F , is not

necessarily carried out along indirect dominating paths. Indeed, following the same logic

discussed in the context of Example 1.1, according to the ESS solution concept, Player 3,

given an opportunity to move at State C, prefers to move to State D, at which their utility

is reduced from 3 to 2, because if they choose not to move and let Player 4 move from State

C to State E, their utility will be zero. We note that at State D, Players 1 and 2 are strictly

worse o¤ than at States A and B, respectively. Therefore, if Player 3 is the �rst to move at

State C, Players 1 and 2 will not move from A and B, respectively. If, however, Player 4 is

the �rst to move at State C, then she will move to State E, at which both Players 1 and 2

are strictly better o¤ than at States A and B, respectively. We conclude that the ESS of

Example 1.1�are either fA,B,D,Eg or fD,Eg.
Next, let us consider the prediction of Kimya�s (2020) static solution concepts, (C)ECB,

for Example 1.1�. Again, we assume that payo¤s are realized only at the �nal states. Consider

Case (i), where coalition behavior, �1, prescribes a move by Player 4 at State C, and moves

by Players 1 and 2 at States A and B, respectively. Then, as in Example 1.1, all three players

don�t have a pro�table deviation from �1. Thus, �1 is a (C)ECB, leading to a Stable Set

fD,Eg. In Case (ii) consider the coalition behavior, �2, where Player 3 moves, and Players 1
and 2 do not move. As in Example 1.1, Player 3 does not have a credible deviation from �2.

Further, Players 1 and 2 do not have a pro�table deviation from �2, leading to the Stable

Set fA,B,D,Eg.
Let us consider the SPCS of Example 1.1�. Recall that if Player 3 is given an opportunity

to move at State C, they will prefer to move to State D. Further, if Player 4 is given an

opportunity to move at State C, they will elect to do so since they are better o¤ at State E
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than at State C and at State D. Thus, according to the SPCS, there is a subgame perfect

equilibrium in which, moves from States A and B could end up at State D (and E). Since

both Players 1 and 2 are strictly worse o¤ at State D, and strictly better o¤ at State E,

than at States A and B, then, using, e.g., expected utility as the optimality criterion, for a

range of endogenously determined probabilities for which Player 3 is the �rst to be granted

the opportunity to move at State C, Players 1 and 2 would prefer not to move from States

A and B, respectively. For a di¤erent range of probabilities, Players 1 and 2 would prefer to

move from States A and B. Since these probabilities may be history dependent, the SPCS

is either fA,B,D,Eg, fA,D,Eg, fB,D,Eg or fD,Eg.
Summarizing, for Example 1.1�, we have LCS = LCCS = vNM FSS = RE solutions =

fD,Eg, the ESS is either fA,B,D,Eg or fD,Eg, and SPCS is either fA,B,D,Eg, fA,D,Eg,
fB,D,Eg or fD,Eg. Thus, all farsighted solution sets are also a SPCS. In particular, all
farsighted solution concepts, except for the ESS and the SPCS, fail to identify the farsighted

optimal behavior of Player 3 at State C, and predict a move from States A and B.

We conclude by another type of possible comparison between solution concepts. Say that

solution concept A is weakly included in solution concept B if for any game, the union of all
solution-A sets is a subset of the union of all solution-B sets. Accordingly, in the farsighted
PD, any of the other farsighted solution concepts is not weakly included in the SPCS, while

in Example 1.1�, the SPCS is not weakly included in any of the other farsighted solution

concepts. We conclude:

Corollary 4.1 The following non-inclusion results hold: (i) Being a SPCS neither implies
nor is implied by being any of the other farsighted solution concepts sets, LCS, LCCS, vNM

FSS, REFS, SREFS, HREFS, HSREFS, ESS and (C)ECB.

(ii) The SPCS neither weakly includes nor is weakly included in any of the other farsighted

solution concepts, LCS, LCCS, vNM FSS, REFS, SREFS, HREFS, HSREFS, ESS and

(C)ECB.

5 Summary

In this paper we introduce a new approach to farsightedness, embodied in the SPCS. The

SPCS retains a main feature of several existing farsighted solution concepts, such as the

LCS, LCCS, vNM FSS, and the more recently introduced solution concepts by D&V (2017),

D&V(2020), and K&R(2021), namely a vNM type of consistency. However, as it relies on

subgame perfection, the problem of maximality, raised by Ray and Vohra (2015a, 2019), is

not present therein. Coalitions are employing best response choices and share the same beliefs
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on coalitional moves at each state. Further, according to the SPCS, all reachable stable states

after a move from a current state are considered, and the attractiveness of such a move is

determined by using preferences respecting �rst order stochastic dominance over the utilities

of the reachable states. Thus, the SPCS incorporates inherent uncertainties in the model

and as such, it extends the farsighted reasoning beyond the con�dence assumption, which

is integral in the solution concepts based on a rational expectation function (or coalition

behavior) approach, recently introduced by D&V (2017), D&V (2020), K&R (2021) and

Kimya (2020).

We prove that whenever the set of states, Z, is �nite, there exists a SPCS*, and we further

prove that the SPCS/SPCS* leads, e.g., to (weak) Pareto e¢ ciency, without coalitions, in

any normal form game having a myopic equilibrium. This result is shown to imply that

farsighted players who adopt the SPCS/SPCS* reasoning will achieve full cooperation and

overcome misaligned incentives in a variety of settings. Speci�cally, our farsighted players will

always share the monopolistic pro�t in farsighted settings based on Bertrand and Cournot

competition, and will always achieve supply chain coordination and Pareto e¢ ciency in a

decentralized setting of the classical newsvendor model and its variants. Finally, modeling

network formation as 1-farsighted normal form game, we show, similar to, e.g., Kimya (2020)

and Luo et al. (2021), that the SPCS/SPCS* is able to mollify the tension between stability

and e¢ ciency in network formation.

Appendix: Proofs

Proof of Proposition 2.1. The de�nition of 	�jh implies that it is non-empty since

the strategy pro�le � 2 �h, following h, generates a probability measure having support
consisting only of in�nite converging histories. Therefore, by de�nition 2.1, a SPCS or

SPCS* is necessarily non-empty. Any terminal state is necessarily in any SPCS or SPCS*,

as no coalition can alter a terminal state when it is selected as an initial state.

Proof of Theorem 2.1. Existence is established assuming that preferences for any

coalition S are represented by the expectation of a coalition utility function uS that is a con-

tinuous and monotonic aggregation of the utility functions ui for all i 2 S from �nal states,

e.g. the expected sum of coalition member utilities from �nal states. We start by showing

that R�(z) 6= ; for any state z 2 Z. Let m = mini2N;ẑ2Z ui(ẑ) � 1 be a strict lower bound
for the utility of any player in any state. Following Flesch et al. (2010), de�ne an auxiliary

game G in the class G+ of positive recursive stochastic games with complete information as
follows: their non-empty and �nite set of players N is our set of all non-empty coalitions;

their non-empty and �nite set of states S is Z[Z 0, where their set of non-absorbing states is
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our set of states Z, and their set of absorbing states is Z 0, a duplicate of Z having as member

one state z0 for each and every state z 2 Z; for each state t 2 S, their associated controlling
player it is some arbitrary non-empty coalition Sz in our game that has the e¤ectiveness

to move at the state z associated with t, or some arbitrary non-empty coalition Sz if no

coalition has the e¤ectiveness to move at z; for each state t 2 S, their associated non-empty
and �nite set of actions At is fz0 2 Z 0g[ fz00 2 Z j z !Sz z

00g consisting of the �absorb/stay�
action z0 2 Z 0 corresponding to z, together with our set of states z00 to which coalition Sz has
the e¤ectiveness to move from the state z associated with t; for each pair of states t; u 2 S
and action a 2 At, their transition probability is deterministic, i.e. the transition probability
given action a from state z 2 Z to state z00 2 Z [ Z 0 associated with t; u, respectively, is
pz(a; z

00) = 1 for z00 = a and 0 otherwise; for each player i 2 N , state t 2 S and action
a 2 At, their payo¤ rit(a) for every non-absorbing state t is 0, and for every absorbing state
t equals uS(z) � FS[(uj(z) � m)j2S] for the coalition S associated with i and the state
z 2 Z corresponding to the z0 2 Z 0 associated with t, where FS : RS+ ! R is a continuous
and monotonic function; their initial state s 2 S is some initial state z 2 Z in our game.

Since all transitions in G are deterministic, by the Main Theorem of Flesch et al. (2010),

G has a subgame perfect equilibrium in pure strategies. This subgame perfect equilibrium

is absorbing, i.e. absorption occurs eventually with probability 1. Since all transitions are

deterministic and the strategies are pure, the subgame perfect equilibrium involves a unique

absorbing state corresponding to a state �z 2 Z. Since any pure strategy best response for a
player in G following any history implies in our game the corresponding pure strategy best

response under the corresponding preferences for the corresponding coalition following the

corresponding history, the strategy pro�le � (with deterministic protocol �c) corresponding

to the subgame perfect equilibrium in G is a subgame perfect equilibrium in our game, and

supports sure reachability from z to �z. Therefore, R�(z) 6= ; for any state z 2 Z. Note that
any state �z 2 R�(z) for any z is by de�nition surely reachable from itself, i.e. �z 2 R�(�z).
Next, de�ne the set X inductively: Let X0 = Y 0 = ;; for k = 1; 2; : : : ; jZj, de�ne the sets
Xk; Y k as follows: if there exists a non-empty subset W k of Z n Y k�1 that is strongly con-
nected according to the relation R� (i.e., any two states z; �z 2 W k are connected by a path of

sure reachability, so that each state is surely reachable from its predecessor along the path)

and no state �z 2 Z n (Y k�1[W k) is in R�(z) for some z 2 W k, then let Y k = Y k�1[W k; ad-

ditionally, de�ne a set V k � W k inductively: start with V k;0 = W k, end with V k = V k;jWkj,
and for l = 1; 2; : : : ;

��W k
�� let V k;l = V k;l�1 n fzk;lg if there exists zk;l 2 V k;l�1 and a coali-

tion S with the e¤ectiveness to move at zk;l and a state �z for which zk;l !S �z such that

all ẑ 2 (Xk�1 [ V k:l�1) \ R�(�z) are weakly better for S than zk;l with at least one being
strictly better, otherwise let V k;l = V k;l�1; then let Xk = Xk�1 [ V k; in any other case, let

38



Y k = Y k�1 and Xk = Xk�1; �nally, let Y = Y jZj and X = X jZj.

By construction, each k, V k and z 2 W k satisfy the following two conditions, namely, con-

dition (I): z 2 V k if either no coalition has the e¤ectiveness to move at z or there exists a
coalition Sz that has the e¤ectiveness to move at z and for any state �z for which z !Sz �z

there exists ẑ 2 (Xk�1 [ V k)\R�(�z) strictly worse for Sz than z, and condition (II): z =2 V k

if there exists a coalition Sz with the e¤ectiveness to move at z and a state �z for which

z !Sz �z such that all ẑ 2 (Xk�1 [ V k)\R�(�z) are weakly better for Sz than z with at least
one being strictly better. Additionally, any state in Y is surely reachable from itself, while

this does not hold for any state in Z n Y . Observe also that X \ R�(z) 6= ; for any state
z 2 Z. To see this, note that (i) z 2 X implies z 2 R�(z); (ii) for z 2 Y nX, condition (I)
implies that for any coalition Sz that has the e¤ectiveness to move at z and any state �z for

which z !Sz �z, any ẑ 2 (Xk�1 [ V k) \ R�(�z) is weakly better for Sz than z; and (iii) for
z 2 Z n Y , X \ R�(z) 6= ; is supported by a strategy pro�le � constructed with protocol �c
always selecting for sure some single non-empty coalition that has the e¤ectiveness to move

from z, and applying backwards induction to extend the continuation strategy pro�les that

support the sure reachability of some state in X \R�(�z) from each �z 2 Y .
Now, de�ne ��X according to the following four speci�cations, and we will subsequently show

that it supports X, constructed above, as a SPCS:

Speci�cation (1): after any history h = (z1; S1; z1; S2; : : : ; z1; St) such that z1 2 R�(z1) and
fSlgtl=1 � 2N n ;, i.e. with no moves by all non-empty coalitions from some initial state

z1 surely reachable from itself, let ��X continue according to some subgame perfect equilib-

rium � supporting this sure reachability, i.e., for all h0 that are continuation histories of h,

��XS (h
0) = �S(h

0) for all coalitions S with P (h0) = S and ��Xc (h
0) = �c(h

0) when P (h0) = c.

Speci�cation (2): after any history h = (z1; S1; z1; S2; : : : ; z1; St�1; z1) such that fSlgt�1l=1 +
2N n ;, i.e. with no moves by some, but not all, non-empty coalitions from some initial state
z1, let the protocol ��Xc (h) at this history have in its support only some arbitrary single

coalition Sz
1
that, when z1 2 Y , satis�es the if statement in either condition (I) or (II) for

z1 in the role of z and some k, or, when the if statements in both conditions are violated or

when z1 2 Z n Y , just has the e¤ectiveness to move at z1 if one exists, or any Sz1 otherwise.
Speci�cation (3): after any history h = (z1; S1; z1; S2; : : : ; z1; St; z2) such that fSlgt�1l=1 +
2N n ; and z1 6= z2, i.e. with no moves from some initial state z1 by some, but not all,

non-empty coalitions, followed by a single, initial move by some coalition St to some other

state z2, consider some �nite collection C(z1; St; z2) of subgame perfect equilibria � of a

subgame in which z2 is the initial state such that �c(z2) 6= ;, i.e. the �rst selected coalition
in this subgame according to each � 2 C(z1; St; z2) is non-empty, and where C(z1; St; z2)
satis�es that z 2 X \ R�(z2) if and only if there is a corresponding subgame perfect equi-
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librium �z 2 C(z1; St; z2) having z as the sure �nal state; let the protocol ��Xc (h0) at any
history h0 = (z1; S1; z1; S2; : : : ; z1; St; z2; ;; z2; : : : ; ;; z2), possibly with ; occurring � = 0

times, have for St+�+1 the support f;g [ [[�z2C(z1;S;z2)�zc(z2)], i.e. includes only the empty
coalition and the �rst selected non-empty coalition in each �z 2 C(z1; S; z2); following any
history (z1; S1; z1; S2; : : : ; z1; St; z2; ;; z2; : : : ; ;; z2; St+�+1) with St+�+1 6= ;, let ��X continue
according to each �z 2 C(z1; St; z2), the identity of which is determined by the identity of
St+�+1 and, in case two distinct �z have the same �rst selected coalition, arbitrarily by � ,

namely half the history length following z2 until St+�+1, and if St+�+1 is di¤erent from the

�rst selected coalition of any �z 2 C(z1; St; z2) then ��X continues according to an arbitrary
�z 2 C(z1; St; z2) following the selection of St+�+1; more speci�cally regarding the protocol
��Xc (h

0), let it assign probabilities to generate a distribution over �z, thus a distribution

d(z2) � d��X jh over �nal states z, so that, (i) whenever z1 2 V k for some k and St = Sz
1

was used to justify this, the generated distribution d(z2) over �nal states following h makes

Sz
1
weakly prefer z1 over d(z2) (this is possible either due to the existence in condition (I)

of states in (Xk�1 [ V k)\R�(z2) strictly worse for Sz1 than z1, with these �nal states being
realized with su¢ ciently high probability and by preference continuity, or due to indi¤er-

ences when the if statements in both conditions (I) and (II) are violated for z1 in the role

of z), and (ii) whenever z1 2 W k n V k for some k and St = Sz1 was used to justify this, the
generated distribution d(z2) over �nal states following h makes Sz

1
weakly prefer d(z2) over

z1 (this is possible either due to the existence condition (II) of states in (Xk�1[V k)\R�(z2)
weakly better for Sz

1
than z1 with at least one being strictly better, with these �nal states

being realized with su¢ ciently high probability and by preference continuity, or due to in-

di¤erences when the if statements in both conditions (I) and (II) are violated for z1 in the

role of z).

Speci�cation (4): after any history h = (z1; S1; z1; S2; : : : ; z1; St) such that fSlgt�1l=1 + 2N n ;,
i.e. with no moves from some initial state z1 by some, but not all, non-empty coalitions, fol-

lowed by the selection of some coalition St, taking as given the continuation ��X as speci�ed

in Speci�cation (3), coalition St acts optimally on and o¤ play path when choosing whether

or not to move from z1 to some z2.

Note that ��X is composed of subgame perfect equilibria following any history as in Spec-

i�cations (1)-(3), and since each coalition only cares about �nal states, also following any

history as in Speci�cation (4). Consequently, ��X is a subgame perfect equilibrium. Further-

more, Speci�cation (1) ensures that ��X satis�es the sure reachability z 2 R�(z) according
to requirement (a) in De�nition 2.1. To see that it also satis�es the sure reachability for

states in X \R�(z2) according to requirement (b) and the stability of states in X according

to requirement (c), note that, (i) for any initial state z1 2 X since z1 2 V k for some k,
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coalition Sz
1
that was used to justify this (and is selected for sure on play path) stays at z1

because it weakly prefers z1, which would be the �nal state for sure if Sz
1
stayed at z1, over

d(z2), for any z2 for which z1 !Sz1 z
2 and Xk \ R�(z2) 6= ;, and because a move to z2 for

which Xk \ R�(z2) = ; (consequently (X nXk) \ R�(z2) 6= ; since X \ R�(z2) 6= ;) cannot
be optimal, as this would contradict (Z n Y k) \ R�(z1) = ; as required by the construction
of Y k; (ii) for any initial state z1 =2 X such that z1 2 W k n V k for some k, coalition Sz1 that
was used to justify this (and is selected for sure on play path) moves from z1 to some z2

for which z1 !Sz1 z
2 and Xk \ R�(z2) 6= ; because Sz1 weakly prefers d(z2) over z1, which

would be the �nal state for sure if Sz
1
stayed at z1, and because, as above, a move to z2 for

which Xk \R�(z2) = ; cannot be optimal, and (iii) some coalition S moves from any initial

state z1 =2 X such that z1 2 Z n Y because any such state is not surely reachable from itself.
Therefore X is a SPCS* supported by ��X .

The following notation is used in the proof of Theorems 3.1 and 3.2. For every two states

z; z0 and coalition S, zSz0 denotes the state z00 2 Z de�ned by z00i = zi for all i 2 S and
z00i = z

0
i otherwise.

Proof of Theorem 3.1. Although we refer in the proof to SPCS with its reachability

R, the entire argument applies also to SPCS* with its reachability R�. We �rst prove (1).

Let X � Z be a SPCS, thus it is necessarily non-empty by Proposition 2.1, and consider

some subgame perfect equilibrium strategy pro�le �X that supports X as a SPCS. We �rst

show that any state z2 2 X is surely reachable from any state z1 2 Z. Fix such z1; z2.
For any �nite history h such that h0 = z1, i.e., z1 is the initial state, let l0h be the minimal

even, positive number l such that (z2)hl�1(hl�2) = z
2, or let l0h = 0 if such l does not exist.

For the subgame in which z1 is selected as the initial state, consider the strategy pro�le �0

de�ned with full support protocol �0c, and de�ned for any �nite history h such that h0 = z
1

and P (h) = S as follows: if !S= ; then �0S(h) = hKh�1; if !S 6= ; and l0h = 0 then let

�0S(h) = (z
2)S(hKh�1), otherwise let �

0
S(h) = �

X
S [z

2; (hk)
Kh

k=l0h�1
]. In this subgame, according

to �0, each coalition S, when selected to make a choice whether to keep the current state or

to move to a new state, moves by choosing the alternatives ai 2 Ai corresponding to z2 for
each player i 2 S and then does not move anymore, except after the �rst time a coalition
S 0 was selected which could move from the current state z to z2, i.e., zi = z2i for all i =2 S 0,
and in fact moved to z0, in which case the strategy pro�le �0 continues exactly as �X does

following the selection of z2 as an initial state and after an initial move by S 0 from z2 to

z0. Consequently the state z2 is the �nal state for sure according to �0 following z1 as the

initial state. It is also the �nal state for sure according to �X following the selection of z2

as an initial state, because in this case �X dictates no moves �see the de�nition of a SPCS.

Moreover, since �X is a subgame perfect equilibrium, no coalition strictly prefers to deviate
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from it after any history, in particular after a history in which all coalitions stayed at z2.

Additionally, no coalition strictly prefers to deviate from �0 after a history involving a partial

process of moves from z1 to z2, because all other coalitions are dictated by �0 to move to z2,

and deviation alone of this coalition would lead to exactly the same weakly inferior distrib-

utions over �nal states as in the case of deviation of this coalition from z2 according to �X .

Therefore �0 is also a subgame perfect equilibrium, proving the sure reachability of z2 from

z1. Since X � R(z1) for any z1 2 Z, it follows that X is a countable set, as requirement (b)

in De�nition 2.1 of the SPCS implies that X = 	�X jh, where 	�X jh is a countable set.

Now suppose that there are at least two distinct states in X and a player i that is not indif-

ferent between them. Since a SPCS is compact and players�utility functions are continuous,

there is a worst state �z 2 X for player i. Consider the history h = (�z; fig), i.e., �z is selected
as an initial state and player i is selected to make a choice whether to keep �z or to move to

a new state. According to �X , since �z 2 X and X is a SPCS, player i is supposed to keep �z,

anticipating it as the �nal state for sure �see the de�nition of a SPCS. But note that in case

of an initial move by player i, o¤ the �X equilibrium path, from �z to a new state, by require-

ment (b) in De�nition 2.1 of the SPCS, any �nal state must be in X, and, since all states

in X are reachable following a move away from �z, there is a positive probability that the

�nal state according to �X will be strictly better than �z for player i. Therefore, player i can

either choose �z for sure, or alternatively, can choose a �rst order stochastically dominating

distribution, as �z is the worst state in X for i. Since the �rst order stochastically dominating

distribution is strictly preferred, the choice of player i to keep �z violates the assumption that

�X is a subgame perfect equilibrium. Since this argument holds for any subgame perfect

equilibrium strategy pro�le �X , we derived a contradiction to the assumption that X is a

SPCS. Therefore, since X is non-empty, it must consist of states that are all equivalent for

all players, i.e. X � fz�g for some z� 2 Z.
Suppose now that z� is not Pareto e¢ cient. Then there exists d 2 ZnX such that ui(d) >

ui(z
�) for each i 2 N . We �rst show that d is surely reachable from itself. For the subgame

in which d is selected as the initial state, consider the strategy pro�le �0 de�ned with full

support protocol �0c, and such that �
0
S(h) = d for any coalition S and any �nite history

h = (d; S1; d; S2; : : : ; d; S), and �0S(h) = �XS (h) for any other history h. In this subgame,

according to �0, each coalition S stays at d, except when some coalition has previously not

done so, in which case the strategy pro�le �0 continues exactly as �X does. Therefore �0

leads on equilibrium path to the �nal state d for sure. Moreover, �0 inherits its subgame

perfection from �X after any history in this subgame with some move away from d, and it is

also subgame perfect following a history with no previous such moves because requirement

(b) in De�nition 2.1 of the SPCS applied to �X implies that an initial move away from d
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will lead for sure to a �nal state equivalent to z�, which is strictly worse than d for any

coalition. Therefore d is reachable from itself. Furthermore, applying the same argument to

�X , any coalition anticipates that coalitions selected later to make a choice can either stay

at d, which, by requirement (a) in De�nition 2.1 of the SPCS and since d is reachable from

itself, would lead to d as the �nal state for sure, or to make an initial move away from d,

which, by requirement (b) of the SPCS, would lead for sure to a �nal state equivalent to the

strictly worse z�. Therefore, no coalition will move away from d after it was selected as an

initial state, contradicting the de�nition of a SPCS because d =2 X. Thus z� must be Pareto
e¢ cient.

Next we prove (2). Suppose that X � fz�g for some Pareto e¢ cient z� 2 Z such that

ui(z
�) � ui(e) for some myopic equilibrium e 2 Z and all i 2 N . Index X with fztgjXjt=1.

For any �nite history h, let l0h be the minimal even, positive number l such that hl�1 6= ;
and there exists an even, positive number l0 < l such that hl0 6= h0, or let l0h = 0 if such l
does not exist; let th = 1 + 1

2
l0h mod jXj; let l1h = 1 if there exists an even, positive number

l > l0h such that (hl)i 6= zthi for i 2 hl�1 and !hl�1 6= ;, otherwise let l1h = 0. Consider

the strategy pro�le �X de�ned with full support protocol �Xc following any �nite history h

such that P (h) = c, and de�ned for any �nite history h such that P (h) = S as follows: if

!S= ; then �XS (h) = hKh�1, otherwise: (a) if h0 2 X then (a1) �XS (h) = h0 when l
0
h = 0,

and (a2) �XS (h) = (zth)S(hKh�1) when l
0
h > 0 and l1h = 0, and (a3) �XS (h) = eS(hKh�1)

when l1h = 1; and (b) if h0 =2 X then (b1) �XS (h) = h0 when l0h = 0, h0 2 R(h0) and

fhlgl=1;3;:::;Kh
� fS � N j!S 6= ;g, otherwise (b2) �XS (h) = (zth)S(hKh�1) when l

1
h = 0, and

(b3) �XS (h) = eS(hKh�1) when l
1
h = 1. According to �

X , if an initial state in X is selected or

if all e¤ective coalitions were selected and none moved from an initial state reachable from

itself, then no coalition moves and this is the �nal state for sure; otherwise, if an initial

move is made away from an initial state in X, or if all previously selected coalitions stayed

at an initial state not in X, then each zth 2 X, the identity of which is determined by the
realization of the history length until the �rst selection of a non-empty coalition following

the initial move, becomes a �nal state by each coalition moving by choosing the alternative

corresponding to zth and then not moving anymore; after any deviation from the above, each

coalition moves to the alternative corresponding to e and then does not move anymore. This

strategy pro�le clearly satis�es both requirements (a) and (b) in De�nition 2.1 (note that

since X is countable, there is no problem with the condition 	�X jh = X \ R(z2)) and also
requirement (c). We now verify that it forms a subgame perfect equilibrium. First note that

on equilibrium path, whether or not the initial state is in X, any �nal state is equivalent for

all players to z�, and this holds also after an initial move away from an initial state in X.

Any deviation after an initial move leads to the �nal state e for sure, and since ui(z�) � ui(e)
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for all i 2 N , no coalition prefers to deviate from the equilibrium path, leading indeed to

a �nal state in X. Moreover, after choices by all e¤ective coalitions to stay o¤ equilibrium

path at an initial state reachable from itself, it becomes the �nal state for sure, supported in

equilibrium by its own reachability. Similarly, e is reachable from itself because it is a myopic

equilibrium, thus when reaching e o¤ equilibrium path, no coalition prefers to deviate, as

this can only lead to a �nal state at most as good as e. Consequently the strategy pro�le is

a subgame perfect equilibrium.

Proof of Theorem 3.2. Although we refer in the proof to SPCS with its reachability

R, the entire argument applies also to SPCS* with its reachability R�. Suppose �rst that

X � �Z is a SPCS supported by �X . By Proposition 2.1, X is non-empty. Suppose that

ui(z
0) < uwi for some z

0 2 X and some player i 2 N . Consider the case where z0 is selected
as an initial state and player i is selected to make a choice whether to keep z0 or to move

to a new state. Since z0 2 X, by the de�nition of a SPCS, �X dictates that player i will

keep z0, anticipating it as a �nal state. But this player could instead adopt a strategy �̂fig in

which he always changes the current state whenever such an opportunity arises, thus forcing

a swinging �nal state, as the game is generic. Since the utility, uwi , of a swinging �nal state

is strictly higher than ui(z0), the choice of player i to keep z0 violates the subgame perfect

equilibrium, a contradiction. Therefore ui(z0) � uwi for all z 2 X and i 2 N . We can now
use an argument similar to the one used in the proof of Theorem 3.1, modi�ed only in the

part proving uniqueness up to equivalence for all players, which would instead conclude that

X\Z = fz�g. Then using the remaining argument concerning Pareto e¢ ciency, swinging can
be eliminated from X when it is not Pareto e¢ cient. Therefore we conclude that X = fz�g
for some Pareto e¢ cient z� 2 �Z such that ui(z�) � uwi for all i 2 N .
For the other direction, suppose that X = fz�g for some Pareto e¢ cient z� 2 �Z such that

ui(z
�) � uwi for all i 2 N . We use an argument similar to the one used to prove (2) in

Theorem 3.1. For any �nite history h, let l0h be the minimal even, positive number l such

that hl�1 6= ; and there exists an even, positive number l0 < l such that hl0 6= h0, or let

l0h = 0 if such l does not exist; let l1h = 1 if there exists an even, positive number l > l0h
such that (hl)i 6= z�i for i 2 hl�1 and !hl�1 6= ;, otherwise let l1h = 0. Consider the strategy
pro�le �X de�ned with full support protocol �Xc following any �nite history h such that

P (h) = c, and de�ned for any �nite history h such that P (h) = S as follows: if !S= ;
then �XS (h) = hKh�1, otherwise: (a) if h0 2 X \ Z then (a1) �XS (h) = h0 when l0h = 0, and
(a2) �XS (h) = (z

�)S(hKh�1) when l
0
h > 0, l

1
h = 0 and z

� 6= w, and (a3) �XS (h) = zS(hKh�1)

when l1h = 1 or z� = w, for some z 2 Z such that zS(hKh�1) 6= hKh�1; and (b) if h0 =2 X
then (b1) �XS (h) = h0 when l

0
h = 0, h0 2 R(h0) \ Z and fhlgl=1;3;:::;Kh

� fS � N j!S 6= ;g,
otherwise (b2) �XS (h) = (z

�)S(hKh�1) when l
1
h = 0 and z

� 6= w, and (b3) �XS (h) = zS(hKh�1)
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when l1h = 1 or z� = w, for some z 2 Z such that zS(hKh�1) 6= hKh�1. According to �
X ,

if an initial state in X \ Z is selected or if all e¤ective coalitions were selected and none

moved from an initial state reachable from itself, then no coalition moves and this is the �nal

state for sure; otherwise, if an initial move is made away from an initial state in X \ Z, or
if all previously selected coalitions stayed at an initial state not in X \ Z, then z� becomes
the �nal state for sure by each coalition moving by choosing the alternatives corresponding

to z� and then not moving anymore, or by keep changing the current state whenever it is

selected to make a choice in the case of swinging; after any deviation from the above, each

coalition conducts a swinging behavior. This strategy pro�le clearly satis�es both properties

(a)-(c) in De�nition 2.1. We now verify that it forms a subgame perfect equilibrium. First

note that on equilibrium path, whether or not z� is the initial state, z� is the �nal state for

sure, and this is also the �nal state for sure after an initial move away from the initial state

z�. Any deviation after an initial move leads to a swinging �nal state, in which case each

player has utility uwi , as the game is generic, and since ui(z
�) � uwi for all i 2 N , no coalition

prefers to deviate from the equilibrium path, leading indeed to the �nal state z� for sure.

Moreover, after choices by all e¤ective coalitions to stay o¤ equilibrium path at an initial

state reachable from itself, it becomes the �nal state for sure, supported in equilibrium by

its own reachability. Similarly, a swinging �nal state is reachable from itself because it is

forced by the other coalitions when they are selected to make a choice. Consequently the

strategy pro�le is a subgame perfect equilibrium.

Proof of Lemma 4.1. Recall that a rational extended expectation function REEF,

denoted F = (F 1(z); : : : ; F k(z)(z)), where F j(z) = (f j(z); Sj(z)), j = 1; : : : ; k(z), Sk(z) =

;, fk(z)(z) = z, is required to satisfy Conditions (I), (E), and (M). Now, for the PD

game, we �rst show that f(C,C); (D,D)g is an ESS by the following REEF F : F (C,D) =
[((D,D); f1g); ((C,D); ;)], F (D,C) = [((D,D); f2g); ((D,C); ;)], F (C,C) = [((C,C); ;)] and
F (D,D) = [((D,D); ;)]. To see this, consider each z 2 Z, starting from z = (C,D). Condition
I is satis�ed since for coalition T = f2g =2 ff1g; ;g, necessarily y = (C,C) with z !f2g y

and i = 2 2 T , and l = k(z) = 2, we have that ui(f l(z); F ) = 4 � 3 = ui(y; F ). Con-

dition E is satis�ed since u1(f 1(C,D); F ) = 1 > 0 = ui(f
2(C,D); F ), and Condition M is

satsi�ed vacuously since there is no y 2 Z with y 6= f 1(z) and z !S1(z) y. Similarly, Con-

ditions (I),(E) and (M) are satis�ed for z = (D,C). Now consider z = (D,D). Condition

(I) is satis�ed since for coalition T = f1g =2 f;g, necessarily y = (C,D) with z !f1g y and

i = 1 2 T , and l = k(z) = 1, we have that ui(f l(z); F ) = 1 � 1 = ui(y; F ), and simi-

larly for coalition T = f2g. Conditions (E) and (M) are satisi�ed vacuously for z = (D,D).
Finally, for z = (C,C), Condition (I) is satis�ed since for coalition T = f1g =2 f;g, nec-
essarily y = (D,C) with z !f1g y and i = 1 2 T , and l = k(z) = 1, we have that
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ui(f
l(z); F ) = 3 � 1 = ui(y; F ), similarly for coalition T = f2g, and Conditions (E) and (M)

are satis�ed vacuously. Note that F is the unique REEF supporting f(C,C); (D,D)g as an
ESS. To see this, suppose that F (C,D) = [((C,C); f2g); ((D,D); f1g); ((C,D); ;)]. Then, for
z = (D,D), T = f1g =2 f;g, f l(z) = z, necessarily y = (C,D) with z !f1g y and i = 1 2 T , we
have ui(f l(z); F ) = 1 � 3 = ui(y; F ), which contradicts Condition (I). Any other possibility
for F (C,D) involves coalition f1; 2g, but since this coalition does not have any e¤ectiveness
to move in this game, any such possibility violates Condition (E) at State (C,D). Similar

reasoning apply for State (D,C).

Next we show f(C,C); (D,D)g is the unique ESS. To this end, consider any other ESS.
For each of the following mutually exclusive and exhaustive cases for this ESS we show a

contradiction, which implies that no other ESS exists.

Case 1: State (D,D) is in the ESS, i.e. it is stationary according to F . Then State

z = (C,D) is not in the ESS, since otherwise it is stationary and for k(z) = 1 = l, S1(z) = ;,
T = f1g =2 fS1(z)g, f l(z) = z and necessarily y = (D,D) with z !f1g y and i = 1 2 T , we
have ui(f l(z); F ) = 0 � 1 = ui(y; F ), which contradicts Condition (I). Therefore k(z) > 1,
and for l = k(z) � 1 it must be that f l(z) = (D,D) and Sl(z) = f1g, which is the only
way to satisfy Condition (E) by ui(f l(z); F ) = 1 > 0 = ui(f

l+1(z); F ) for all i 2 Sl(z).
Similarly, (D,C) is not in the ESS and k(D,C) > 1. Then, State z = (C,C) is stationary,

since otherwise (D,D) is the unique stationary state and for l = k(z) � 1 it must be that
ui(f

l(z); F ) = 1 � 3 = ui(f l+1(z); F ) for i 2 Sl(z), which contradicts Condition (E). Since
the considered ESS was assumed di¤erent from f(C,C); (D,D)g, this is a contradiction.
Case 2: State (D,D) is not in the ESS, and State (C,C) is in the ESS. Then, State (C,D)

is not in the ESS, since otherwise for z = (C,C), T = f2g =2 f;g, f l(z) = z, necessarily

y = (C,D) with z !f2g y and i = 2 2 T , we have ui(f l(z); F ) = 3 � 4 = ui(y; F ), which

contradicts Condition (I). Similarly, State (D,C) is not in the ESS. Since (C,C) is the unique

stationary state, for z = (C,D), l = k(z) � 1, f l(z) = (D,D) and Sl(z) = f1g we have
u1(f

l(z); F ) = 3 > 0 = u1(f
l+1(z); F ) in order to satisfy Condition (E). But then, for l = 1

we necessarily have f l(z) = (C,C), Sl(z) = f2g and u1(f l(z); F ) = 3 � 3 = u1(f l+1(z); F ),
which contradicts Condition (E).

Case 3: Neither (D,D) nor (C,C) is in the ESS. By Corollary 4.1 in K&R (2021), the

ESS must be non-empty. If both (C,D) and (D,C) are in the ESS alone then for z = (D,D)

and l = k(z) � 1 we have ui(f l(z); F ) = 0 � 1 = ui(f
l+1(z); F ) for i 2 Sl(z), which

contradicts Condition (E). If (C,D) is the unique state in the ESS then we must have that

F (D,D) = [((D,C); f2g); ((D,D); ;)] so that u2(f 1(z); F ) = 4 > 1 = u2(f 2(z); F ) in order to
satisfy Condition (E). However, for z = (D,C) and l = k(z) � 1 necessarily f l(z) = (C,C),
Sl(z) = f1g and u1(f l(z); F ) = 0 � 4 = u1(f

l+1(z); F ), which contradicts Condition (E).
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Similarly, (D,C) cannot be the unique state in the ESS.
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